YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of a Global Climate Model to the Specification of Convective Updraft and Downdraft Mass Fluxes

    Source: Journal of the Atmospheric Sciences:;1988:;Volume( 045 ):;issue: 019::page 2641
    Author:
    Del Genio, Anthony D.
    ,
    Yao, Mao-Sung
    DOI: 10.1175/1520-0469(1988)045<2641:SOAGCM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: We examine the response of the GISS global climate model to different parameterizations of moist convective man flux. A control run with arbitrarily specified updraft mass flux is compared to experiments that predict cumulus mass flux on the basis of low-level convergence, convergence plus surface evaporation, or convergence and evaporation modified by varying boundary layer height. An experiment that includes a simple parameterization of saturated convective-scale downdrafts is also described. Convergence effects on cumulus mass flux significantly improve the model's January climatology by increasing the frequency of occurrence of deep convection in the tropics and decreasing it at high latitudes, shifting the ITCZ from 12°N to 4°5, strengthening convective heating in the western Pacific, and increasing tropical long-wave eddy kinetic energy. Surface evaporation effects generally oppose the effects of convergence but are necessary to produce realistic continental convective heating and well-defined marine shallow cumulus regions. Varying boundary layer height (as prescribed by variations in lifting condensation level) has little effect on the model climatology. Downdrafts, however, reinforce many of the positive effects of convergence while also improving the model's vertical humidity profile and radiation balance. The diurnal cycle of precipitation over the West Pacific is best simulated when convergence determines cumulus mass flux, while surface flux effects are needed to reproduce diurnal variations in the continental ITCZ. In each experiment the model correctly simulates the observed correlation between deep convection strength and tropical sea surface temperature; the parameterization of cumulus mass flux has little effect on this relationship. The experiments have several implications for cloud effects on climate sensitivity. The dependence of cumulus mass flux on vertical motions, and the insensitivity of mean vertical motions to changes in forcing, suggests that the convective response to climate forcing may be weaker than that estimated in previous global climate model simulations that link convection only to moist static instability. This implies that changes in cloud cover and hence positive cloud feedback have been overestimated in these climate change experiments. Downdrafts may affect the feedback in the same sense by replenishing boundary layer moisture relative to cumulus parameterization schemes with only dry compensating subsidence.
    • Download: (2.118Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of a Global Climate Model to the Specification of Convective Updraft and Downdraft Mass Fluxes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4156057
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorDel Genio, Anthony D.
    contributor authorYao, Mao-Sung
    date accessioned2017-06-09T14:28:26Z
    date available2017-06-09T14:28:26Z
    date copyright1988/10/01
    date issued1988
    identifier issn0022-4928
    identifier otherams-19891.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4156057
    description abstractWe examine the response of the GISS global climate model to different parameterizations of moist convective man flux. A control run with arbitrarily specified updraft mass flux is compared to experiments that predict cumulus mass flux on the basis of low-level convergence, convergence plus surface evaporation, or convergence and evaporation modified by varying boundary layer height. An experiment that includes a simple parameterization of saturated convective-scale downdrafts is also described. Convergence effects on cumulus mass flux significantly improve the model's January climatology by increasing the frequency of occurrence of deep convection in the tropics and decreasing it at high latitudes, shifting the ITCZ from 12°N to 4°5, strengthening convective heating in the western Pacific, and increasing tropical long-wave eddy kinetic energy. Surface evaporation effects generally oppose the effects of convergence but are necessary to produce realistic continental convective heating and well-defined marine shallow cumulus regions. Varying boundary layer height (as prescribed by variations in lifting condensation level) has little effect on the model climatology. Downdrafts, however, reinforce many of the positive effects of convergence while also improving the model's vertical humidity profile and radiation balance. The diurnal cycle of precipitation over the West Pacific is best simulated when convergence determines cumulus mass flux, while surface flux effects are needed to reproduce diurnal variations in the continental ITCZ. In each experiment the model correctly simulates the observed correlation between deep convection strength and tropical sea surface temperature; the parameterization of cumulus mass flux has little effect on this relationship. The experiments have several implications for cloud effects on climate sensitivity. The dependence of cumulus mass flux on vertical motions, and the insensitivity of mean vertical motions to changes in forcing, suggests that the convective response to climate forcing may be weaker than that estimated in previous global climate model simulations that link convection only to moist static instability. This implies that changes in cloud cover and hence positive cloud feedback have been overestimated in these climate change experiments. Downdrafts may affect the feedback in the same sense by replenishing boundary layer moisture relative to cumulus parameterization schemes with only dry compensating subsidence.
    publisherAmerican Meteorological Society
    titleSensitivity of a Global Climate Model to the Specification of Convective Updraft and Downdraft Mass Fluxes
    typeJournal Paper
    journal volume45
    journal issue19
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1988)045<2641:SOAGCM>2.0.CO;2
    journal fristpage2641
    journal lastpage2668
    treeJournal of the Atmospheric Sciences:;1988:;Volume( 045 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian