YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anomaly General Circulation Models

    Source: Journal of the Atmospheric Sciences:;1988:;Volume( 045 ):;issue: 009::page 1509
    Author:
    Navarra, A.
    ,
    Miyakoda, K.
    DOI: 10.1175/1520-0469(1988)045<1509:AGCM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Anomally models based on a spectral general circulation model (GCM) are formulated and applied to study of low-frequency atmospheric variability in the extratropics, and long-range forecasting research. A steady linear version of the anomaly model is treated by a matrix method. This model consists of nine vertical levels, 15 wave rhomboidal truncation, primitive equation system, and a fixed basic state, which is three-dimensionally variable. The matrix to be handled is extremely large, but can be solved using Krylov's technique. The solutions represent various teleconnection patterns known in the observed atmosphere. The sensitivity of the response of this anomaly model to zonally variability of the temporally fixed basic fields and to the geographical position of tropical heatings is investigated. The solutions of the steady linear anomaly model are compared with those of the original GCM, revealing that there are a few similarities among the solutions, but considerable discrepancies are also evident. A time-dependent nonlinear anomaly model is applied to further investigate the discrepancy. It appears that transient are crucial for explaining the disagreement, although the study with the time-dependent anomaly model is preliminary. A noteworthy aspect of the overall approach is that the anomaly models are derived, with only small modifications, from the full GCM, and therefore, their relationship can be readily investigated. It is concluded that the steady linear model may be used as a diagnostic tool for investigating the characteristics of the full GCM and the dynamics of a particular state of the atmosphere. However, caution is needed when there is a significant role played by transient eddies, and in the treatment of tropical Rayleigh friction.
    • Download: (1.743Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anomaly General Circulation Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4155973
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorNavarra, A.
    contributor authorMiyakoda, K.
    date accessioned2017-06-09T14:28:14Z
    date available2017-06-09T14:28:14Z
    date copyright1988/05/01
    date issued1988
    identifier issn0022-4928
    identifier otherams-19815.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4155973
    description abstractAnomally models based on a spectral general circulation model (GCM) are formulated and applied to study of low-frequency atmospheric variability in the extratropics, and long-range forecasting research. A steady linear version of the anomaly model is treated by a matrix method. This model consists of nine vertical levels, 15 wave rhomboidal truncation, primitive equation system, and a fixed basic state, which is three-dimensionally variable. The matrix to be handled is extremely large, but can be solved using Krylov's technique. The solutions represent various teleconnection patterns known in the observed atmosphere. The sensitivity of the response of this anomaly model to zonally variability of the temporally fixed basic fields and to the geographical position of tropical heatings is investigated. The solutions of the steady linear anomaly model are compared with those of the original GCM, revealing that there are a few similarities among the solutions, but considerable discrepancies are also evident. A time-dependent nonlinear anomaly model is applied to further investigate the discrepancy. It appears that transient are crucial for explaining the disagreement, although the study with the time-dependent anomaly model is preliminary. A noteworthy aspect of the overall approach is that the anomaly models are derived, with only small modifications, from the full GCM, and therefore, their relationship can be readily investigated. It is concluded that the steady linear model may be used as a diagnostic tool for investigating the characteristics of the full GCM and the dynamics of a particular state of the atmosphere. However, caution is needed when there is a significant role played by transient eddies, and in the treatment of tropical Rayleigh friction.
    publisherAmerican Meteorological Society
    titleAnomaly General Circulation Models
    typeJournal Paper
    journal volume45
    journal issue9
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1988)045<1509:AGCM>2.0.CO;2
    journal fristpage1509
    journal lastpage1530
    treeJournal of the Atmospheric Sciences:;1988:;Volume( 045 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian