YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Using MODIS to Estimate Cloud Contamination of the AVHRR Data Record

    Source: Journal of Atmospheric and Oceanic Technology:;2002:;volume( 019 ):;issue: 005::page 586
    Author:
    Heidinger, Andrew K.
    ,
    Anne, Venkata Rao
    ,
    Dean, Charles
    DOI: 10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A study of the improvement in cloud-masking capability of data from a Moderate Resolution Imaging Spectroradiometer (MODIS) relative to data from an Advanced Very High Resolution Radiometer (AVHRR) is performed. MODIS offers significant advances over AVHRR in spatial resolution and spectral information. Three MODIS scenes that present a range of cloudiness, surface type, and illumination conditions are analyzed. AVHRR local area coverage (LAC) and global area coverage (GAC) data were synthesized from the most spectrally comparable MODIS channels. This study explores the benefits to cloud masking offered by MODIS beyond that offered by AVHRR. No global generalization can be inferred from this limited analysis, but this study does attempt to quantify the added benefit of MODIS over AVHRR for three scenes. The sole focus is on the levels of cloud contamination in clear AVHRR pixels; the misclassification of clear pixels as cloudy is not addressed. For the scenes studied, the results of the additional MODIS tests revealed measurable residual cloud contamination in both AVHRR LAC and GAC clear pixels. From this analysis, the contamination of the clear pixels in AVHRR LAC data was between 1% and 3% for the cases studied. The levels of contamination of the clear GAC pixels revealed by MODIS cloud tests ranged from 2% to 4%. MODIS was able to reveal roughly 2% more cloud contamination of clear GAC pixels than was revealed by LAC. This result indicates that the increase in spatial resolution offered by MODIS may be as significant to reducing cloud contamination as is the increase in spectral information. Inclusion of the results of AVHRR spatial uniformity tests applied to MODIS or LAC pixels revealed potentially much more cloud contamination of clear GAC pixels. The larger values of potential cloud contamination revealed by spatial uniformity tests were not apparent in the clear-sky products. An analysis of the derived SST, land surface temperature (LST), and normalized difference vegetation index (NDVI) fields was conducted to explore the impact of the MODIS-inferred cloud contamination on these products. The results indicated minimal effects on the distribution of SST, LST, and NDVI derived from AVHRR LAC data. Errors in the GAC SST and LST had standard deviations of 0.1 and 0.3 K, respectively. The GAC NDVI error distribution has a standard deviation of 0.03 for all scenes. The GAC error distributions showed little bias, indicating that cloud-masking differences between the AVHRR and MODIS should not introduce a discontinuity in the AVHRR/MODIS/Visible Infrared Imaging Radiometer Suite (VIIRS) SST and NDVI data records.
    • Download: (1.557Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Using MODIS to Estimate Cloud Contamination of the AVHRR Data Record

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4155944
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorHeidinger, Andrew K.
    contributor authorAnne, Venkata Rao
    contributor authorDean, Charles
    date accessioned2017-06-09T14:28:09Z
    date available2017-06-09T14:28:09Z
    date copyright2002/05/01
    date issued2002
    identifier issn0739-0572
    identifier otherams-1979.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4155944
    description abstractA study of the improvement in cloud-masking capability of data from a Moderate Resolution Imaging Spectroradiometer (MODIS) relative to data from an Advanced Very High Resolution Radiometer (AVHRR) is performed. MODIS offers significant advances over AVHRR in spatial resolution and spectral information. Three MODIS scenes that present a range of cloudiness, surface type, and illumination conditions are analyzed. AVHRR local area coverage (LAC) and global area coverage (GAC) data were synthesized from the most spectrally comparable MODIS channels. This study explores the benefits to cloud masking offered by MODIS beyond that offered by AVHRR. No global generalization can be inferred from this limited analysis, but this study does attempt to quantify the added benefit of MODIS over AVHRR for three scenes. The sole focus is on the levels of cloud contamination in clear AVHRR pixels; the misclassification of clear pixels as cloudy is not addressed. For the scenes studied, the results of the additional MODIS tests revealed measurable residual cloud contamination in both AVHRR LAC and GAC clear pixels. From this analysis, the contamination of the clear pixels in AVHRR LAC data was between 1% and 3% for the cases studied. The levels of contamination of the clear GAC pixels revealed by MODIS cloud tests ranged from 2% to 4%. MODIS was able to reveal roughly 2% more cloud contamination of clear GAC pixels than was revealed by LAC. This result indicates that the increase in spatial resolution offered by MODIS may be as significant to reducing cloud contamination as is the increase in spectral information. Inclusion of the results of AVHRR spatial uniformity tests applied to MODIS or LAC pixels revealed potentially much more cloud contamination of clear GAC pixels. The larger values of potential cloud contamination revealed by spatial uniformity tests were not apparent in the clear-sky products. An analysis of the derived SST, land surface temperature (LST), and normalized difference vegetation index (NDVI) fields was conducted to explore the impact of the MODIS-inferred cloud contamination on these products. The results indicated minimal effects on the distribution of SST, LST, and NDVI derived from AVHRR LAC data. Errors in the GAC SST and LST had standard deviations of 0.1 and 0.3 K, respectively. The GAC NDVI error distribution has a standard deviation of 0.03 for all scenes. The GAC error distributions showed little bias, indicating that cloud-masking differences between the AVHRR and MODIS should not introduce a discontinuity in the AVHRR/MODIS/Visible Infrared Imaging Radiometer Suite (VIIRS) SST and NDVI data records.
    publisherAmerican Meteorological Society
    titleUsing MODIS to Estimate Cloud Contamination of the AVHRR Data Record
    typeJournal Paper
    journal volume19
    journal issue5
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2
    journal fristpage586
    journal lastpage601
    treeJournal of Atmospheric and Oceanic Technology:;2002:;volume( 019 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian