YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Airborne Measurements of Surface, Layer Turbulence over the Ocean during Cold Air Outbreaks

    Source: Journal of the Atmospheric Sciences:;1987:;Volume( 044 ):;issue: 024::page 3721
    Author:
    Chou, Shu-Hsien
    ,
    Yeh, Eueng-Nan
    DOI: 10.1175/1520-0469(1987)044<3721:AMOSLT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Airborne measurements of atmospheric turbulence spectra and cospectra made at the 50 m level above the western Atlantic Ocean during cold air outbreaks have been studied. The data cover nearshore areas of cloud streets or roll vortices. In the inertial submnge, the results are in good agreement with previous measurements made over both land and sea, except for those of temperature. The high-frequency behavior is consistent with local isotropy. In the inertial subrange, a near 4/3 ratio is observed between velocity spectra normal to and those along the aircrat~ heading. Also, the normalized spectra and cospectra of vertical velocity, humidity, and temperature are independent of sampling directions. The normalized cospectrum of the humidity flux appears to have a -4/3 cospectral slope, while the normalized cospectrum of stress appears to have -4/3 and -5/3 cospectral slopes in the alongwind and crosswind samples, respectively. The shapes of the spectra and cospectra vary with sampling direction. Except for crosswind velocity, the normalized spectra and cospectra appear to have more energy in the crosswind samples at the dimensionless frequency (f) ~ 0.2 and more in the alongwind samples at f< 0. I. This is mainly due to the stretching action ofthe mean wind shear on convective elements and is in good agreement with previous aircraft measurements. For the alongwind samples, the normalized velocity spectra for f< 0.1 appear not to be in good agreement with the spectral models derived from the cloud-free, highly convective Minnesota data. According to the latter, the normalized horizontal velocity spectra are nearly equal for low frequencies, while our results show that the low-frequency convection is significantly suppressed in the alongwind direction by the vertical wind shear. The three dissipation estimates, derived from the high-frequency part of the velocity spectra, appear to be in good agreement with a 9% mean discrepancy. The normalized dissipation is systematically smaller than those derived from the convective Kansas and Minnesota data. The turbulent kinetic energy budget is also different. For the same total energy production by wind shear and buoyancy, energy is available for exporting out of the surface layer in this case, whereas it must be imported into the Kansas and Minnesota surface layers.
    • Download: (1.287Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Airborne Measurements of Surface, Layer Turbulence over the Ocean during Cold Air Outbreaks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4155852
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorChou, Shu-Hsien
    contributor authorYeh, Eueng-Nan
    date accessioned2017-06-09T14:27:52Z
    date available2017-06-09T14:27:52Z
    date copyright1987/12/01
    date issued1987
    identifier issn0022-4928
    identifier otherams-19706.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4155852
    description abstractAirborne measurements of atmospheric turbulence spectra and cospectra made at the 50 m level above the western Atlantic Ocean during cold air outbreaks have been studied. The data cover nearshore areas of cloud streets or roll vortices. In the inertial submnge, the results are in good agreement with previous measurements made over both land and sea, except for those of temperature. The high-frequency behavior is consistent with local isotropy. In the inertial subrange, a near 4/3 ratio is observed between velocity spectra normal to and those along the aircrat~ heading. Also, the normalized spectra and cospectra of vertical velocity, humidity, and temperature are independent of sampling directions. The normalized cospectrum of the humidity flux appears to have a -4/3 cospectral slope, while the normalized cospectrum of stress appears to have -4/3 and -5/3 cospectral slopes in the alongwind and crosswind samples, respectively. The shapes of the spectra and cospectra vary with sampling direction. Except for crosswind velocity, the normalized spectra and cospectra appear to have more energy in the crosswind samples at the dimensionless frequency (f) ~ 0.2 and more in the alongwind samples at f< 0. I. This is mainly due to the stretching action ofthe mean wind shear on convective elements and is in good agreement with previous aircraft measurements. For the alongwind samples, the normalized velocity spectra for f< 0.1 appear not to be in good agreement with the spectral models derived from the cloud-free, highly convective Minnesota data. According to the latter, the normalized horizontal velocity spectra are nearly equal for low frequencies, while our results show that the low-frequency convection is significantly suppressed in the alongwind direction by the vertical wind shear. The three dissipation estimates, derived from the high-frequency part of the velocity spectra, appear to be in good agreement with a 9% mean discrepancy. The normalized dissipation is systematically smaller than those derived from the convective Kansas and Minnesota data. The turbulent kinetic energy budget is also different. For the same total energy production by wind shear and buoyancy, energy is available for exporting out of the surface layer in this case, whereas it must be imported into the Kansas and Minnesota surface layers.
    publisherAmerican Meteorological Society
    titleAirborne Measurements of Surface, Layer Turbulence over the Ocean during Cold Air Outbreaks
    typeJournal Paper
    journal volume44
    journal issue24
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1987)044<3721:AMOSLT>2.0.CO;2
    journal fristpage3721
    journal lastpage3733
    treeJournal of the Atmospheric Sciences:;1987:;Volume( 044 ):;issue: 024
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian