YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Laboratory Simulation of Mechanical Effects of Mountains on the General Circulation of the Northern Hemisphere: Uniform Shear Background Flow

    Source: Journal of the Atmospheric Sciences:;1987:;Volume( 044 ):;issue: 023::page 3552
    Author:
    Boyer, Don L.
    ,
    Chen, Rui-Rong
    DOI: 10.1175/1520-0469(1987)044<3552:LSOMEO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The dimensionless governing equations and boundary conditions for the atmosphere are compared with those for a linearly stratified rotating dishpan laboratory experiment; by doing so a set of similarity criteria are determined. Model experiments on the effects of Greenland, the Rocky Mountains and Tibet on a uniform shear zonal flow in the Northern Hemisphere are presented. The laboratory model qualitatively simulates such semipermanent features of the Northern Hemisphere circulation as the Aleutian and Icelandic lows, the ridgesand troughs in the vicinity of the Rocky Mountains and Tibet and the shedding of the "southwest eddy" in the lee of Tibet. Although the background flow is steady, the large-scale disturbances caused by the mountains are unsteady and have an inherent periodicity equal to the time required for a fluid parcel to make a single 'circuit around the dishpan (globe). The strengths of the Aleutian and Icelandic lows, for example, oscillate with this Iiod; the lows are out of phase in the sense that when one is weak the other is strong and vice versa. A number of other correlations between various regions of the flow field are also noted. Removal of the model of Tibet does not greatly affect ihe qualitative nature of the general flow pattern. For example, the Aleutian and Icelandic lows remain as distinct entities, although their strengths and locations are altered somewhat, and the general character of the flow in the vicinity of the Rocky Mountains remains essentially unchanged. On the other hand, removal of the Rocky Mountains eliminates the Aleutian and Icelandic lows as separate entities. The joint effect ofthe Rocky Mountains and Tibet is to deflect the streamlines in the higherlatitudes toward the north, thus causing deeper Aleutian and Icelandic lows and locations of these features which are more similar to observations in the atmosphere than if either of these features is absent. The experiments show in a quite straightforward fashion the important effects mountains have on the formation of some of the semipermanent features of the Northern Hemisphere.
    • Download: (2.827Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Laboratory Simulation of Mechanical Effects of Mountains on the General Circulation of the Northern Hemisphere: Uniform Shear Background Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4155835
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBoyer, Don L.
    contributor authorChen, Rui-Rong
    date accessioned2017-06-09T14:27:49Z
    date available2017-06-09T14:27:49Z
    date copyright1987/12/01
    date issued1987
    identifier issn0022-4928
    identifier otherams-19691.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4155835
    description abstractThe dimensionless governing equations and boundary conditions for the atmosphere are compared with those for a linearly stratified rotating dishpan laboratory experiment; by doing so a set of similarity criteria are determined. Model experiments on the effects of Greenland, the Rocky Mountains and Tibet on a uniform shear zonal flow in the Northern Hemisphere are presented. The laboratory model qualitatively simulates such semipermanent features of the Northern Hemisphere circulation as the Aleutian and Icelandic lows, the ridgesand troughs in the vicinity of the Rocky Mountains and Tibet and the shedding of the "southwest eddy" in the lee of Tibet. Although the background flow is steady, the large-scale disturbances caused by the mountains are unsteady and have an inherent periodicity equal to the time required for a fluid parcel to make a single 'circuit around the dishpan (globe). The strengths of the Aleutian and Icelandic lows, for example, oscillate with this Iiod; the lows are out of phase in the sense that when one is weak the other is strong and vice versa. A number of other correlations between various regions of the flow field are also noted. Removal of the model of Tibet does not greatly affect ihe qualitative nature of the general flow pattern. For example, the Aleutian and Icelandic lows remain as distinct entities, although their strengths and locations are altered somewhat, and the general character of the flow in the vicinity of the Rocky Mountains remains essentially unchanged. On the other hand, removal of the Rocky Mountains eliminates the Aleutian and Icelandic lows as separate entities. The joint effect ofthe Rocky Mountains and Tibet is to deflect the streamlines in the higherlatitudes toward the north, thus causing deeper Aleutian and Icelandic lows and locations of these features which are more similar to observations in the atmosphere than if either of these features is absent. The experiments show in a quite straightforward fashion the important effects mountains have on the formation of some of the semipermanent features of the Northern Hemisphere.
    publisherAmerican Meteorological Society
    titleLaboratory Simulation of Mechanical Effects of Mountains on the General Circulation of the Northern Hemisphere: Uniform Shear Background Flow
    typeJournal Paper
    journal volume44
    journal issue23
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1987)044<3552:LSOMEO>2.0.CO;2
    journal fristpage3552
    journal lastpage3575
    treeJournal of the Atmospheric Sciences:;1987:;Volume( 044 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian