YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Model for the Equilibrium Shape of Raindrops

    Source: Journal of the Atmospheric Sciences:;1987:;Volume( 044 ):;issue: 011::page 1509
    Author:
    Beard, Kenneth V.
    ,
    Chuang, Catherine
    DOI: 10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The equilibrium shape of raindrops has been determined from Laplace's equation using an internal hydrostatic pressure with an external aerodynamic pressure based on measurements for a sphere but adjusted for the effect of distortion. The drop shape was calculated by integration from the upper pole with the initial curvature determined by iteration on the drop volume. The shape was closed at the lower pole by adjusting either the pressure drag or the drop weight to achieve an overall force balance. Model results provide bounds on the axis ratio of raindrops with an uncertainty of about 1% and very good agreement with extensive wind tunnel measurements for moderate to large water drops. The model yields the peculiar asymmetric shape of raindrops: a singly curved surface with a flattened base and a maximum curvature just below the major axis. A close match was found between model shapes and profiles obtained from photos of water drops for diameters up to 5 mm. Coefficients are provided for computing raindrop shape as a cosine series distortion on a sphere. In contrast to earlier models of raindrop shape for the oblate spheroid response to gravity (Green, Beard) or the perturbation response to the aerodynamic pressure for a sphere (Imai, Savic, Pruppacher and Pitter), the present model provides the appropriate large amplitude response to both the hydrostatic and aerodynamic pressures modified for distortion. In addition, the new model can be readily extended to include other pressures such as an electric stress.
    • Download: (1.422Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Model for the Equilibrium Shape of Raindrops

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4155675
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBeard, Kenneth V.
    contributor authorChuang, Catherine
    date accessioned2017-06-09T14:27:22Z
    date available2017-06-09T14:27:22Z
    date copyright1987/06/01
    date issued1987
    identifier issn0022-4928
    identifier otherams-19547.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4155675
    description abstractThe equilibrium shape of raindrops has been determined from Laplace's equation using an internal hydrostatic pressure with an external aerodynamic pressure based on measurements for a sphere but adjusted for the effect of distortion. The drop shape was calculated by integration from the upper pole with the initial curvature determined by iteration on the drop volume. The shape was closed at the lower pole by adjusting either the pressure drag or the drop weight to achieve an overall force balance. Model results provide bounds on the axis ratio of raindrops with an uncertainty of about 1% and very good agreement with extensive wind tunnel measurements for moderate to large water drops. The model yields the peculiar asymmetric shape of raindrops: a singly curved surface with a flattened base and a maximum curvature just below the major axis. A close match was found between model shapes and profiles obtained from photos of water drops for diameters up to 5 mm. Coefficients are provided for computing raindrop shape as a cosine series distortion on a sphere. In contrast to earlier models of raindrop shape for the oblate spheroid response to gravity (Green, Beard) or the perturbation response to the aerodynamic pressure for a sphere (Imai, Savic, Pruppacher and Pitter), the present model provides the appropriate large amplitude response to both the hydrostatic and aerodynamic pressures modified for distortion. In addition, the new model can be readily extended to include other pressures such as an electric stress.
    publisherAmerican Meteorological Society
    titleA New Model for the Equilibrium Shape of Raindrops
    typeJournal Paper
    journal volume44
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1987)044<1509:ANMFTE>2.0.CO;2
    journal fristpage1509
    journal lastpage1524
    treeJournal of the Atmospheric Sciences:;1987:;Volume( 044 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian