YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Applicability of Effective-Medium Theories to problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles

    Source: Journal of the Atmospheric Sciences:;1986:;Volume( 043 ):;issue: 005::page 468
    Author:
    Bohren, Craig F.
    DOI: 10.1175/1520-0469(1986)043<0468:AOEMTT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Effective-medium theories yield effective dielectric functions (or, equivalently, refractive indices) of composite media. Such theories have been formulated that go beyond the Maxwell-Garnett and Bruggeman theories, which art restricted to media composed of grains much smaller than the wavelength. These extended effective-medium theories do not, however, yield effective dielectric functions that can be used for the same purposes for which we unhesitatingly use the dielectric functions of substances such as pure water and pure ice (e.g., reflection and transmission by smooth interfaces; absorption and scattering by particles). Extended dielectric functions can lead to unphysical results; for example, absorption in composite media with nonabsorbing components. Moreover, if the grains in composite media are large enough to give rise to magnetic dipole and higher-order multipole radiation, then the effective permeability of the composite medium cannot be taken to be that of free space even if the grains are nonmagnetic. Recently, extended effective-medium theories have been applied to the problem of determining, the effective dielectric function of ice in which soot grains are embedded in order to explain a factor of 2 discrepancy between measurements of the albedo of soot-contaminated snow and calculations based on a snow albedo model. Setting aside questions about the applicability of these theories, reasonable alternative explanations for the discrepancy exist: (i) Soot is not an invariable substance; measured refractive indices of carbonaceous materials vary appreciably, especially the imaginary part (about a factor of 5). (ii) Absorption by a small soot particle depends on its shape, varying by as much as a factor of 2. (iii) Absorption by a soot particle may be enhanced by porosity; for a fixed particle volume, the enhancement is roughly proportional to the porosity. To predict exactly how much a given amount of soot reduces the visible albedo of snow requires, therefore, more detailed information about the soot than is likely to be readily obtainable.
    • Download: (804.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Applicability of Effective-Medium Theories to problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4155339
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorBohren, Craig F.
    date accessioned2017-06-09T14:26:17Z
    date available2017-06-09T14:26:17Z
    date copyright1986/03/01
    date issued1986
    identifier issn0022-4928
    identifier otherams-19244.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4155339
    description abstractEffective-medium theories yield effective dielectric functions (or, equivalently, refractive indices) of composite media. Such theories have been formulated that go beyond the Maxwell-Garnett and Bruggeman theories, which art restricted to media composed of grains much smaller than the wavelength. These extended effective-medium theories do not, however, yield effective dielectric functions that can be used for the same purposes for which we unhesitatingly use the dielectric functions of substances such as pure water and pure ice (e.g., reflection and transmission by smooth interfaces; absorption and scattering by particles). Extended dielectric functions can lead to unphysical results; for example, absorption in composite media with nonabsorbing components. Moreover, if the grains in composite media are large enough to give rise to magnetic dipole and higher-order multipole radiation, then the effective permeability of the composite medium cannot be taken to be that of free space even if the grains are nonmagnetic. Recently, extended effective-medium theories have been applied to the problem of determining, the effective dielectric function of ice in which soot grains are embedded in order to explain a factor of 2 discrepancy between measurements of the albedo of soot-contaminated snow and calculations based on a snow albedo model. Setting aside questions about the applicability of these theories, reasonable alternative explanations for the discrepancy exist: (i) Soot is not an invariable substance; measured refractive indices of carbonaceous materials vary appreciably, especially the imaginary part (about a factor of 5). (ii) Absorption by a small soot particle depends on its shape, varying by as much as a factor of 2. (iii) Absorption by a soot particle may be enhanced by porosity; for a fixed particle volume, the enhancement is roughly proportional to the porosity. To predict exactly how much a given amount of soot reduces the visible albedo of snow requires, therefore, more detailed information about the soot than is likely to be readily obtainable.
    publisherAmerican Meteorological Society
    titleApplicability of Effective-Medium Theories to problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles
    typeJournal Paper
    journal volume43
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1986)043<0468:AOEMTT>2.0.CO;2
    journal fristpage468
    journal lastpage475
    treeJournal of the Atmospheric Sciences:;1986:;Volume( 043 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian