YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interactions among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds

    Source: Journal of the Atmospheric Sciences:;1986:;Volume( 043 ):;issue: 001::page 90
    Author:
    Curry, Judith A.
    DOI: 10.1175/1520-0469(1986)043<0090:IATRAM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Arctic Stratus Experiment, conducted during June 1980 over the Beaufort Sea, produced an extensive set of simultaneous measurements of boundary layer structure, radiation fluxes, and cloud microphysical properties. In this paper these data are used to determine the interactions between mixing, radiative transfer, and cloud microphysics for four cloud decks. The thermodynamic structure and fluxes of the thermodynamic quantities in the cloudy boundary layer are examined, including liquid water fluxes. Net radiative heating profiles are also determined. A detailed analysis of the fine-scale structure of the cloud microphysics is presented, including correlations between the cloud microphysical parameters (droplet concentration, liquid water content, mean radius, spectral dispersion, and the 95% volume liquid water drop radius), which are used to infer the nature of the mixing processes and the local effects of radiative heating/cooling. A comparison is then made with other observations and existing model conceptions of the cloudy boundary layer and cloud microphysical processes. Due to the large static stability and frequent occurrence of a humidity inversion, these clouds are not maintained by surface fluxes of moisture. The net radiative cooling at the cloud top is balanced differently for each of the cases examined, although in all four cases at least a portion of the radiative cooling was found to promote mixed-layer convection. The effects of turbulent entrainment do not penetrate beyond 50 m below mean cloud top, therefore not directly affecting the evolution of the drop spectra except for right near cloud top. Significant liquid water production due to radiative cooling is indicated by the profiles of buoyancy flux, entropy flux, water fluxes, and vertical velocity variance, and also by the large drop spectral dispersions and the correlations between the cloud microphysical parameters. Liquid water fluxes are determined to be nearly as large as the vapor fluxes. The liquid water flux divergences introduce significant structure into the profiles of liquid water content and drop spectra, and also enhance coalescence processes in the lower portion of the clouds.
    • Download: (1.197Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interactions among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4155300
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorCurry, Judith A.
    date accessioned2017-06-09T14:26:10Z
    date available2017-06-09T14:26:10Z
    date copyright1986/01/01
    date issued1986
    identifier issn0022-4928
    identifier otherams-19209.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4155300
    description abstractThe Arctic Stratus Experiment, conducted during June 1980 over the Beaufort Sea, produced an extensive set of simultaneous measurements of boundary layer structure, radiation fluxes, and cloud microphysical properties. In this paper these data are used to determine the interactions between mixing, radiative transfer, and cloud microphysics for four cloud decks. The thermodynamic structure and fluxes of the thermodynamic quantities in the cloudy boundary layer are examined, including liquid water fluxes. Net radiative heating profiles are also determined. A detailed analysis of the fine-scale structure of the cloud microphysics is presented, including correlations between the cloud microphysical parameters (droplet concentration, liquid water content, mean radius, spectral dispersion, and the 95% volume liquid water drop radius), which are used to infer the nature of the mixing processes and the local effects of radiative heating/cooling. A comparison is then made with other observations and existing model conceptions of the cloudy boundary layer and cloud microphysical processes. Due to the large static stability and frequent occurrence of a humidity inversion, these clouds are not maintained by surface fluxes of moisture. The net radiative cooling at the cloud top is balanced differently for each of the cases examined, although in all four cases at least a portion of the radiative cooling was found to promote mixed-layer convection. The effects of turbulent entrainment do not penetrate beyond 50 m below mean cloud top, therefore not directly affecting the evolution of the drop spectra except for right near cloud top. Significant liquid water production due to radiative cooling is indicated by the profiles of buoyancy flux, entropy flux, water fluxes, and vertical velocity variance, and also by the large drop spectral dispersions and the correlations between the cloud microphysical parameters. Liquid water fluxes are determined to be nearly as large as the vapor fluxes. The liquid water flux divergences introduce significant structure into the profiles of liquid water content and drop spectra, and also enhance coalescence processes in the lower portion of the clouds.
    publisherAmerican Meteorological Society
    titleInteractions among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds
    typeJournal Paper
    journal volume43
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1986)043<0090:IATRAM>2.0.CO;2
    journal fristpage90
    journal lastpage106
    treeJournal of the Atmospheric Sciences:;1986:;Volume( 043 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian