YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Spectral Integration of the Quasi-Geostrophic Equations for Doubly-Periodic and Channel Flow

    Source: Journal of the Atmospheric Sciences:;1985:;Volume( 042 ):;issue: 001::page 95
    Author:
    Vallis, Geoffrey K.
    DOI: 10.1175/1520-0469(1985)042<0095:OTSIOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The spectral integration of the quasi-geostrophic equations is reexamined for simple boundary conditions in Cartesian geometry. For doubly-periodic flow, it is shown that the mean shear must be constant in time or its evolution specified; grid transform methods are then appropriate. In a channel model, a suitable choice of spectral expansion allows the mean shear to be determined internally, i.e., from the model equations, and also allows the meridional gradient of potential vorticity at the boundaries to be specified. However, the use of conventional transform techniques will lead to aliasing and energy nonconservation, and use must be made either of interaction coefficients or a combination of appended zero grid transforms and analytic Fourier expansions.
    • Download: (373.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Spectral Integration of the Quasi-Geostrophic Equations for Doubly-Periodic and Channel Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4155045
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorVallis, Geoffrey K.
    date accessioned2017-06-09T14:25:24Z
    date available2017-06-09T14:25:24Z
    date copyright1985/01/01
    date issued1985
    identifier issn0022-4928
    identifier otherams-18980.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4155045
    description abstractThe spectral integration of the quasi-geostrophic equations is reexamined for simple boundary conditions in Cartesian geometry. For doubly-periodic flow, it is shown that the mean shear must be constant in time or its evolution specified; grid transform methods are then appropriate. In a channel model, a suitable choice of spectral expansion allows the mean shear to be determined internally, i.e., from the model equations, and also allows the meridional gradient of potential vorticity at the boundaries to be specified. However, the use of conventional transform techniques will lead to aliasing and energy nonconservation, and use must be made either of interaction coefficients or a combination of appended zero grid transforms and analytic Fourier expansions.
    publisherAmerican Meteorological Society
    titleOn the Spectral Integration of the Quasi-Geostrophic Equations for Doubly-Periodic and Channel Flow
    typeJournal Paper
    journal volume42
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1985)042<0095:OTSIOT>2.0.CO;2
    journal fristpage95
    journal lastpage99
    treeJournal of the Atmospheric Sciences:;1985:;Volume( 042 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian