YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Short-Term Prediction of Lagrangian Trajectories

    Source: Journal of Atmospheric and Oceanic Technology:;2001:;volume( 018 ):;issue: 008::page 1398
    Author:
    Piterbarg, Leonid I.
    DOI: 10.1175/1520-0426(2001)018<1398:STPOLT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Lagrangian particles in a cluster are divided in two groups: observable and unobservable. The problem is to predict the unobservable particle positions given their initial positions and velocities based on observations of the observable particles. A Markov model for Lagrangian motion is formulated. The model implies that the positions and velocities of any number of particles form a multiple diffusion process. A prediction algorithm is proposed based on this model and Kalman filter ideas. The algorithm performance is examined by the Monte Carlo approach in the case of a single predictand. The prediction error is most sensitive to the ratio of the velocity correlation radius and the initial cluster radius. For six predictors, if this parameter equals 5, then the relative error is less than 0.1 for the 15-day prediction, whereas for the ratio close to 1, the error is about 0.9. The relative error does not change significantly as the number of predictors increases from 4?7 to 20.
    • Download: (882.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Short-Term Prediction of Lagrangian Trajectories

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4155033
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorPiterbarg, Leonid I.
    date accessioned2017-06-09T14:25:22Z
    date available2017-06-09T14:25:22Z
    date copyright2001/08/01
    date issued2001
    identifier issn0739-0572
    identifier otherams-1897.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4155033
    description abstractLagrangian particles in a cluster are divided in two groups: observable and unobservable. The problem is to predict the unobservable particle positions given their initial positions and velocities based on observations of the observable particles. A Markov model for Lagrangian motion is formulated. The model implies that the positions and velocities of any number of particles form a multiple diffusion process. A prediction algorithm is proposed based on this model and Kalman filter ideas. The algorithm performance is examined by the Monte Carlo approach in the case of a single predictand. The prediction error is most sensitive to the ratio of the velocity correlation radius and the initial cluster radius. For six predictors, if this parameter equals 5, then the relative error is less than 0.1 for the 15-day prediction, whereas for the ratio close to 1, the error is about 0.9. The relative error does not change significantly as the number of predictors increases from 4?7 to 20.
    publisherAmerican Meteorological Society
    titleShort-Term Prediction of Lagrangian Trajectories
    typeJournal Paper
    journal volume18
    journal issue8
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2001)018<1398:STPOLT>2.0.CO;2
    journal fristpage1398
    journal lastpage1410
    treeJournal of Atmospheric and Oceanic Technology:;2001:;volume( 018 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian