YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Local and Global Baroclinic Instability of Zonally Varying Flow

    Source: Journal of the Atmospheric Sciences:;1984:;Volume( 041 ):;issue: 014::page 2141
    Author:
    Pierrehumbert, R. T.
    DOI: 10.1175/1520-0469(1984)041<2141:LAGBIO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The baroclinic instability characteristics of zonally inhomogeneous basic states are examined with the intent of clarifying the factors governing the regional distribution of cyclogenesis. The vertical shear of the basic state wind is allowed to vary gradually in the zonal direction, so as to permit the representation of zonally localized regions of high baroclinicity. The resulting eigenvalue problem is solved directly by numerical means and also analytically via a WKB analysis. It was established that flows with localized baroclinicity can support two distinct classes of unstable modes, which we call ?local? and ?global.? The local modes have peak amplitude downstream of the point of maximum baroclinicity, decay to zero exponentially upstream and downstream of the peak and do not require zonally periodic boundary conditions for their existence. The growth rate of a local mode is equal to the absolute growth rate (in the sense of Merkine) determined locally at the point of maximum shear. The absolute growth rate decreases when the vertically averaged zonal wind is increased, in contrast with the conventional locally determined maximum growth rate. Further properties of the local modes are discussed. The global modes, on the other hand, require periodic boundary conditions for their existence and have growth rates which are sensitive to the average baroclinicity over the domain. Global modes take a much longer time than local modes to emerge from random initial conditions. On the basis of these results, it is suggested that the locally determined absolute growth rate is a useful diagnostic for assessing the stability of inhomogeneous flow. In this connection, a tentative analysis of the results of Frederiksen on planetary wave instabilities was found to be encouraging. Although only a simple model of baroclinic instability was considered in the present work, the techniques developed can be generalized to any kind of instability provided that there is a separation in spatial scale between the eddies and the basic state. It is thus proposed that there is a general link between absolute instability and the instability of nonparallel flow.
    • Download: (1.753Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Local and Global Baroclinic Instability of Zonally Varying Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154930
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorPierrehumbert, R. T.
    date accessioned2017-06-09T14:25:02Z
    date available2017-06-09T14:25:02Z
    date copyright1984/07/01
    date issued1984
    identifier issn0022-4928
    identifier otherams-18877.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154930
    description abstractThe baroclinic instability characteristics of zonally inhomogeneous basic states are examined with the intent of clarifying the factors governing the regional distribution of cyclogenesis. The vertical shear of the basic state wind is allowed to vary gradually in the zonal direction, so as to permit the representation of zonally localized regions of high baroclinicity. The resulting eigenvalue problem is solved directly by numerical means and also analytically via a WKB analysis. It was established that flows with localized baroclinicity can support two distinct classes of unstable modes, which we call ?local? and ?global.? The local modes have peak amplitude downstream of the point of maximum baroclinicity, decay to zero exponentially upstream and downstream of the peak and do not require zonally periodic boundary conditions for their existence. The growth rate of a local mode is equal to the absolute growth rate (in the sense of Merkine) determined locally at the point of maximum shear. The absolute growth rate decreases when the vertically averaged zonal wind is increased, in contrast with the conventional locally determined maximum growth rate. Further properties of the local modes are discussed. The global modes, on the other hand, require periodic boundary conditions for their existence and have growth rates which are sensitive to the average baroclinicity over the domain. Global modes take a much longer time than local modes to emerge from random initial conditions. On the basis of these results, it is suggested that the locally determined absolute growth rate is a useful diagnostic for assessing the stability of inhomogeneous flow. In this connection, a tentative analysis of the results of Frederiksen on planetary wave instabilities was found to be encouraging. Although only a simple model of baroclinic instability was considered in the present work, the techniques developed can be generalized to any kind of instability provided that there is a separation in spatial scale between the eddies and the basic state. It is thus proposed that there is a general link between absolute instability and the instability of nonparallel flow.
    publisherAmerican Meteorological Society
    titleLocal and Global Baroclinic Instability of Zonally Varying Flow
    typeJournal Paper
    journal volume41
    journal issue14
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1984)041<2141:LAGBIO>2.0.CO;2
    journal fristpage2141
    journal lastpage2162
    treeJournal of the Atmospheric Sciences:;1984:;Volume( 041 ):;issue: 014
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian