YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Blocking-Like Solutions of the Potential Vorticity Equation: Their Stability at Equilibrium and Growth at Resonance

    Source: Journal of the Atmospheric Sciences:;1983:;Volume( 040 ):;issue: 010::page 2522
    Author:
    Mitchell, Herschel L.
    ,
    Derome, Jacques
    DOI: 10.1175/1520-0469(1983)040<2522:BLSOTP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Three-dimensional flows for which q=??(p)? where q is the potential vorticity, ? the stream function and ? some arbitrary function of pressure, are examined. It is found that flows which satisfy this condition and are quite similar to atmospheric blocking patterns can be generated by the superposition of a zonal current independent of the meridional coordinate plus two eddy components. These flows, for which the Jacobian of ? and q is zero, are of interest because 1) in the absence of forcing they constitute steady state solutions of the potential vorticity equation; and 2) the possibility exists that they can be forced resonantly to a finite amplitude by means of a potential vorticity source. The arbitrariness in the choice of ? is removed by specifying the vertical profile of the diabatic heating. It is shown that when the latter is a linear function of Pressure the resultant forced flow is nearly equivalent barotropic, stable to small amplitude perturbations, with a tendency for the blocking patterns to become somewhat move prominent with increasing pressure, in rather good agreement with observations of blocking highs. By integration of a three-level beta-plant model in time, it is shown that it is indeed possible, in the absence of dissipation, to thermally fore the above types of flows at resonance and to generate flow patterns that are quite similar to atmospheric blocking patterns. It is also shown that even when a rather broad spectrum of modes is thermally forced, the above resonant modes tend to dominate the flow, in spite of the possible interaction among modes. This would imply that provided the mean zonal flow has the proper strength to produce a resonance condition, the thermal forcing field need not have a very special structure to produce a finite amplitude disturbance through resonance.
    • Download: (1.159Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Blocking-Like Solutions of the Potential Vorticity Equation: Their Stability at Equilibrium and Growth at Resonance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154708
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorMitchell, Herschel L.
    contributor authorDerome, Jacques
    date accessioned2017-06-09T14:24:14Z
    date available2017-06-09T14:24:14Z
    date copyright1983/10/01
    date issued1983
    identifier issn0022-4928
    identifier otherams-18677.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154708
    description abstractThree-dimensional flows for which q=??(p)? where q is the potential vorticity, ? the stream function and ? some arbitrary function of pressure, are examined. It is found that flows which satisfy this condition and are quite similar to atmospheric blocking patterns can be generated by the superposition of a zonal current independent of the meridional coordinate plus two eddy components. These flows, for which the Jacobian of ? and q is zero, are of interest because 1) in the absence of forcing they constitute steady state solutions of the potential vorticity equation; and 2) the possibility exists that they can be forced resonantly to a finite amplitude by means of a potential vorticity source. The arbitrariness in the choice of ? is removed by specifying the vertical profile of the diabatic heating. It is shown that when the latter is a linear function of Pressure the resultant forced flow is nearly equivalent barotropic, stable to small amplitude perturbations, with a tendency for the blocking patterns to become somewhat move prominent with increasing pressure, in rather good agreement with observations of blocking highs. By integration of a three-level beta-plant model in time, it is shown that it is indeed possible, in the absence of dissipation, to thermally fore the above types of flows at resonance and to generate flow patterns that are quite similar to atmospheric blocking patterns. It is also shown that even when a rather broad spectrum of modes is thermally forced, the above resonant modes tend to dominate the flow, in spite of the possible interaction among modes. This would imply that provided the mean zonal flow has the proper strength to produce a resonance condition, the thermal forcing field need not have a very special structure to produce a finite amplitude disturbance through resonance.
    publisherAmerican Meteorological Society
    titleBlocking-Like Solutions of the Potential Vorticity Equation: Their Stability at Equilibrium and Growth at Resonance
    typeJournal Paper
    journal volume40
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1983)040<2522:BLSOTP>2.0.CO;2
    journal fristpage2522
    journal lastpage2536
    treeJournal of the Atmospheric Sciences:;1983:;Volume( 040 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian