YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sampling Errors in Wind Fields Constructed from Single and Tandem Scatterometer Datasets

    Source: Journal of Atmospheric and Oceanic Technology:;2001:;volume( 018 ):;issue: 006::page 1014
    Author:
    Schlax, Michael G.
    ,
    Chelton, Dudley B.
    ,
    Freilich, Michael H.
    DOI: 10.1175/1520-0426(2001)018<1014:SEIWFC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Sampling patterns and sampling errors from various scatterometer datasets are examined. Four single and two tandem scatterometer mission scenarios are considered. The single scatterometer missions are ERS (with a single, narrow swath), NSCAT and ASCAT (dual swaths), and QuikSCAT (a single, broad swath obtained from the SeaWinds instrument). The two tandem scenarios are combinations of the broad-swath SeaWinds scatterometer with ASCAT and QuikSCAT. The dense, nearly uniform distribution of measurements within swaths, combined with the relatively sparse, nonuniform placement of the swaths themselves create complicated space?time sampling patterns. The temporal sampling of all of the missions is characterized by bursts of closely spaced samples separated by longer gaps and is highly variable in both latitude and longitude. Sampling errors are quantified by the expected squared bias of particular linear estimates of component winds. Modifications to a previous method that allow more efficient expected squared bias calculations are presented and applied. Sampling errors depend strongly on both the details of the temporal sampling of each mission and the assumed temporal scales of variability in the wind field but are relatively insensitive to different spatial scales of variability. With the exception of ERS, all of the scatterometer scenarios can be used to make low-resolution (3° and 12 days) wind component maps with errors at or below the 1 m s?1 level. Only datasets from the broad-swath and tandem mission scenarios can be used for higher-resolution maps with similar levels of error, emphasizing the importance of the improved spatial and temporal coverage of those missions. A brief discussion of measurement errors concludes that sampling error is generally the dominant term in the overall error budget for maps constructed from scatterometer datasets.
    • Download: (1.350Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sampling Errors in Wind Fields Constructed from Single and Tandem Scatterometer Datasets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154678
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorSchlax, Michael G.
    contributor authorChelton, Dudley B.
    contributor authorFreilich, Michael H.
    date accessioned2017-06-09T14:24:09Z
    date available2017-06-09T14:24:09Z
    date copyright2001/06/01
    date issued2001
    identifier issn0739-0572
    identifier otherams-1865.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154678
    description abstractSampling patterns and sampling errors from various scatterometer datasets are examined. Four single and two tandem scatterometer mission scenarios are considered. The single scatterometer missions are ERS (with a single, narrow swath), NSCAT and ASCAT (dual swaths), and QuikSCAT (a single, broad swath obtained from the SeaWinds instrument). The two tandem scenarios are combinations of the broad-swath SeaWinds scatterometer with ASCAT and QuikSCAT. The dense, nearly uniform distribution of measurements within swaths, combined with the relatively sparse, nonuniform placement of the swaths themselves create complicated space?time sampling patterns. The temporal sampling of all of the missions is characterized by bursts of closely spaced samples separated by longer gaps and is highly variable in both latitude and longitude. Sampling errors are quantified by the expected squared bias of particular linear estimates of component winds. Modifications to a previous method that allow more efficient expected squared bias calculations are presented and applied. Sampling errors depend strongly on both the details of the temporal sampling of each mission and the assumed temporal scales of variability in the wind field but are relatively insensitive to different spatial scales of variability. With the exception of ERS, all of the scatterometer scenarios can be used to make low-resolution (3° and 12 days) wind component maps with errors at or below the 1 m s?1 level. Only datasets from the broad-swath and tandem mission scenarios can be used for higher-resolution maps with similar levels of error, emphasizing the importance of the improved spatial and temporal coverage of those missions. A brief discussion of measurement errors concludes that sampling error is generally the dominant term in the overall error budget for maps constructed from scatterometer datasets.
    publisherAmerican Meteorological Society
    titleSampling Errors in Wind Fields Constructed from Single and Tandem Scatterometer Datasets
    typeJournal Paper
    journal volume18
    journal issue6
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2001)018<1014:SEIWFC>2.0.CO;2
    journal fristpage1014
    journal lastpage1036
    treeJournal of Atmospheric and Oceanic Technology:;2001:;volume( 018 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian