YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bounds on the Growth of Perturbations to Non-Parallel Steady Flow on the Barotropic Beta Plane

    Source: Journal of the Atmospheric Sciences:;1983:;Volume( 040 ):;issue: 005::page 1207
    Author:
    Pierrehumbert, R. T.
    DOI: 10.1175/1520-0469(1983)040<1207:BOTGOP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Based on consideration of the perturbation enstrophy and energy equations, we have derived a general family of bounds on the growth rates of perturbations to non-parallel (vortex-like or wave-like) flow on the barotropic beta-plane, allowing for the effects of forcing, Ekman friction, and topography. The family of bounds generalizes Arnol?d's stability criterion. A number of specific applications of the family of bounds are explored. In particular, the formulas are used to demonstrate that the growth rate of the perturbations must vanish if the perturbation length-scale approaches zero or infinity. The distinction between transient and sustained growth of perturbation energy is discussed in light of our results. It is suggested that the bounds are most useful for estimating transient growth rates.
    • Download: (929.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bounds on the Growth of Perturbations to Non-Parallel Steady Flow on the Barotropic Beta Plane

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154598
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorPierrehumbert, R. T.
    date accessioned2017-06-09T14:23:53Z
    date available2017-06-09T14:23:53Z
    date copyright1983/05/01
    date issued1983
    identifier issn0022-4928
    identifier otherams-18578.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154598
    description abstractBased on consideration of the perturbation enstrophy and energy equations, we have derived a general family of bounds on the growth rates of perturbations to non-parallel (vortex-like or wave-like) flow on the barotropic beta-plane, allowing for the effects of forcing, Ekman friction, and topography. The family of bounds generalizes Arnol?d's stability criterion. A number of specific applications of the family of bounds are explored. In particular, the formulas are used to demonstrate that the growth rate of the perturbations must vanish if the perturbation length-scale approaches zero or infinity. The distinction between transient and sustained growth of perturbation energy is discussed in light of our results. It is suggested that the bounds are most useful for estimating transient growth rates.
    publisherAmerican Meteorological Society
    titleBounds on the Growth of Perturbations to Non-Parallel Steady Flow on the Barotropic Beta Plane
    typeJournal Paper
    journal volume40
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1983)040<1207:BOTGOP>2.0.CO;2
    journal fristpage1207
    journal lastpage1217
    treeJournal of the Atmospheric Sciences:;1983:;Volume( 040 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian