January and July Simulations with a Spectral General Circulation ModelSource: Journal of the Atmospheric Sciences:;1983:;Volume( 040 ):;issue: 003::page 580Author:Pitcher, Eric J.
,
Malone, Robert C.
,
Ramanathan, V.
,
Blackmon, Maurice L.
,
Puri, Kamal
,
Bourke, William
DOI: 10.1175/1520-0469(1983)040<0580:JAJSWA>2.0.CO;2Publisher: American Meteorological Society
Abstract: We describe the results of January and July simulations carded out with a nine-level spectral model, employing a rhomboidal truncation at wavenumber 15. Sea-surface temperature, sea-ice distribution and solar zenith angle are held constant in each simulation. The model includes interactive clouds and radiative processes after Ramanathan et al. (1983). Selected fields are shown which highlight the model's strengths and weaknesses. The latitude-height distribution of the zonal wind is successfully simulated. The model captures the separation between the wintertime westerly jets in the troposphere and stratosphere and thus simulates the sign reversal in the vertical wind shear across the jet axis in the upper troposphere. In addition to the zonal wind, we show also the zonally averaged temperature, meridional wind and vertical velocity. Regional distributions of sea-level pressure, surface air temperature, precipitation and a number of other fields defined at various pressure levels are compared in detail with observations. For the most part, the large-scale features of the observed general circulation are successfully simulated, although the sea-level pressure in the subtropics over continental regions in the wintertime is higher than observed, and the model atmosphere tends to be a few degrees colder than observed. We otter a partial explanation for this last deficiency. There is good agreement between the model stratosphere and the actual stratosphere. Preliminary indications suggest the variability present in the model is comparable to that found in the atmosphere.
|
Collections
Show full item record
contributor author | Pitcher, Eric J. | |
contributor author | Malone, Robert C. | |
contributor author | Ramanathan, V. | |
contributor author | Blackmon, Maurice L. | |
contributor author | Puri, Kamal | |
contributor author | Bourke, William | |
date accessioned | 2017-06-09T14:23:42Z | |
date available | 2017-06-09T14:23:42Z | |
date copyright | 1983/03/01 | |
date issued | 1983 | |
identifier issn | 0022-4928 | |
identifier other | ams-18528.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4154543 | |
description abstract | We describe the results of January and July simulations carded out with a nine-level spectral model, employing a rhomboidal truncation at wavenumber 15. Sea-surface temperature, sea-ice distribution and solar zenith angle are held constant in each simulation. The model includes interactive clouds and radiative processes after Ramanathan et al. (1983). Selected fields are shown which highlight the model's strengths and weaknesses. The latitude-height distribution of the zonal wind is successfully simulated. The model captures the separation between the wintertime westerly jets in the troposphere and stratosphere and thus simulates the sign reversal in the vertical wind shear across the jet axis in the upper troposphere. In addition to the zonal wind, we show also the zonally averaged temperature, meridional wind and vertical velocity. Regional distributions of sea-level pressure, surface air temperature, precipitation and a number of other fields defined at various pressure levels are compared in detail with observations. For the most part, the large-scale features of the observed general circulation are successfully simulated, although the sea-level pressure in the subtropics over continental regions in the wintertime is higher than observed, and the model atmosphere tends to be a few degrees colder than observed. We otter a partial explanation for this last deficiency. There is good agreement between the model stratosphere and the actual stratosphere. Preliminary indications suggest the variability present in the model is comparable to that found in the atmosphere. | |
publisher | American Meteorological Society | |
title | January and July Simulations with a Spectral General Circulation Model | |
type | Journal Paper | |
journal volume | 40 | |
journal issue | 3 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/1520-0469(1983)040<0580:JAJSWA>2.0.CO;2 | |
journal fristpage | 580 | |
journal lastpage | 604 | |
tree | Journal of the Atmospheric Sciences:;1983:;Volume( 040 ):;issue: 003 | |
contenttype | Fulltext |