YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Errors in Fixed and Moving Frame of References: Applications for Conventional and Doppler Radar Analysis

    Source: Journal of the Atmospheric Sciences:;1982:;Volume( 039 ):;issue: 010::page 2279
    Author:
    Gal-Chen, Tzvi
    DOI: 10.1175/1520-0469(1982)039<2279:EIFAMF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Procedures for the estimation and correction of advection effects with single and multiple conventional and Doppler radars are developed. In the case of scalars or Cartesian vectors, the essence of the method is finding a moving frame of reference where (in the least-square sense) the observations are as stationary as possible. It is shown that this is quite different from the more traditional correlation techniques. In the case of non-Cartesian vectors (e.g., radial velocities from Doppler radars), very different criteria are derived. For a single Doppler radar, we look for a frame of reference where ?[?2/?t2(vrr)]2 is a minimum. Here vr is the radial velocity, t is time and r is the distance of the observed point from the radar. In the multiple Doppler case, it is shown that in a frame of reference moving with the advection speed, ?[?/?t(vr(1)r(1)) ? ?/?t(vr(2)r(2))]2is a minimum. Here superscripts (1) and (2) refer to radars (1) and (2), respectively. For scalars (such as radar reflectivities) or Cartesian vectors, the correction for advection is trivial; one merely redefines the observations in the new frame. It is shown that in general, this correction, when applied to radial velocities, is wrong. The appropriate correction procedures are derived. Using scale analysis, error estimates with and without the correction procedures are derived. Experiments with dual-Doppler radar data of the optically clear boundary layer demonstrate that for that case it is possible to estimate advection velocities from the data. When a correction procedure is applied, the horizontal velocities, as well as the derived vertical motions, display improved temporal correlation between scans.
    • Download: (1.522Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Errors in Fixed and Moving Frame of References: Applications for Conventional and Doppler Radar Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154443
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorGal-Chen, Tzvi
    date accessioned2017-06-09T14:23:25Z
    date available2017-06-09T14:23:25Z
    date copyright1982/10/01
    date issued1982
    identifier issn0022-4928
    identifier otherams-18438.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154443
    description abstractProcedures for the estimation and correction of advection effects with single and multiple conventional and Doppler radars are developed. In the case of scalars or Cartesian vectors, the essence of the method is finding a moving frame of reference where (in the least-square sense) the observations are as stationary as possible. It is shown that this is quite different from the more traditional correlation techniques. In the case of non-Cartesian vectors (e.g., radial velocities from Doppler radars), very different criteria are derived. For a single Doppler radar, we look for a frame of reference where ?[?2/?t2(vrr)]2 is a minimum. Here vr is the radial velocity, t is time and r is the distance of the observed point from the radar. In the multiple Doppler case, it is shown that in a frame of reference moving with the advection speed, ?[?/?t(vr(1)r(1)) ? ?/?t(vr(2)r(2))]2is a minimum. Here superscripts (1) and (2) refer to radars (1) and (2), respectively. For scalars (such as radar reflectivities) or Cartesian vectors, the correction for advection is trivial; one merely redefines the observations in the new frame. It is shown that in general, this correction, when applied to radial velocities, is wrong. The appropriate correction procedures are derived. Using scale analysis, error estimates with and without the correction procedures are derived. Experiments with dual-Doppler radar data of the optically clear boundary layer demonstrate that for that case it is possible to estimate advection velocities from the data. When a correction procedure is applied, the horizontal velocities, as well as the derived vertical motions, display improved temporal correlation between scans.
    publisherAmerican Meteorological Society
    titleErrors in Fixed and Moving Frame of References: Applications for Conventional and Doppler Radar Analysis
    typeJournal Paper
    journal volume39
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1982)039<2279:EIFAMF>2.0.CO;2
    journal fristpage2279
    journal lastpage2300
    treeJournal of the Atmospheric Sciences:;1982:;Volume( 039 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian