YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Evolution of an Observed Cold Front. Part I. Numerical Simulation

    Source: Journal of the Atmospheric Sciences:;1982:;Volume( 039 ):;issue: 002::page 296
    Author:
    Ross, Bruce B.
    ,
    Orlanski, Isidoro
    DOI: 10.1175/1520-0469(1982)039<0296:TEOAOC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The 48 h evolution of an observed cold front is simulated by a three-dimensional mesoscale-numerical model for a typical springtime synoptic situation over the southeastern United States. The model used in this study employs anelastic equations of motion on a limited-area domain with locally determined inflow/outflow side boundaries. Both the observed and simulated characteristics of the weather system indicate a mature front which intensifies and then weakens over the 48 h period. Moist convection occurs in the form of intermittent squall lines in the observed case; in the numerical simulation, convection develops above and somewhat ahead of the surface front after 24 h as in ensemble of convective cells. An investigation is made of the mesoscale and subsynoptic-scale features of this solution to determine their sensitivity to the inclusion of moisture and to the magnitude of the eddy viscosity used in the numerical simulation. The primary effect of increased eddy viscosity is to reduce somewhat the propagation speed of the front. The major changes due to moisture inclusion occur when convection develops along the cold front; these convective effects, which are apparent in the subsynoptic as well as the mesoscale features of the solution, include increased low-level convergence, reduced surface pressure due to diabatic heating, and the deflection of winds due to upper-level divergence. In addition, small temperature changes occur in the middle troposphere between the jet stream and the surface front when either viscosity or moisture is varied; these disturbances are a clear manifestation of the effect which changes in the cross-stream circulation intensity have upon the frontal system. A fundamental feature of the mesoscale structure of the front in all cases is the tendency of the line of maximum horizontal convergence at the surface to move ahead of the line of maximum vertical vorticity. This phase shift appears to be related to, the propagation characteristics of the frontal system. Also, the mesoscale moist convection develops a cellular structure throughout the convective zone in the low-viscosity solution; the use of higher viscosity tends to suppress these cells, particularly near the surface.
    • Download: (2.953Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Evolution of an Observed Cold Front. Part I. Numerical Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154277
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorRoss, Bruce B.
    contributor authorOrlanski, Isidoro
    date accessioned2017-06-09T14:22:50Z
    date available2017-06-09T14:22:50Z
    date copyright1982/02/01
    date issued1982
    identifier issn0022-4928
    identifier otherams-18289.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154277
    description abstractThe 48 h evolution of an observed cold front is simulated by a three-dimensional mesoscale-numerical model for a typical springtime synoptic situation over the southeastern United States. The model used in this study employs anelastic equations of motion on a limited-area domain with locally determined inflow/outflow side boundaries. Both the observed and simulated characteristics of the weather system indicate a mature front which intensifies and then weakens over the 48 h period. Moist convection occurs in the form of intermittent squall lines in the observed case; in the numerical simulation, convection develops above and somewhat ahead of the surface front after 24 h as in ensemble of convective cells. An investigation is made of the mesoscale and subsynoptic-scale features of this solution to determine their sensitivity to the inclusion of moisture and to the magnitude of the eddy viscosity used in the numerical simulation. The primary effect of increased eddy viscosity is to reduce somewhat the propagation speed of the front. The major changes due to moisture inclusion occur when convection develops along the cold front; these convective effects, which are apparent in the subsynoptic as well as the mesoscale features of the solution, include increased low-level convergence, reduced surface pressure due to diabatic heating, and the deflection of winds due to upper-level divergence. In addition, small temperature changes occur in the middle troposphere between the jet stream and the surface front when either viscosity or moisture is varied; these disturbances are a clear manifestation of the effect which changes in the cross-stream circulation intensity have upon the frontal system. A fundamental feature of the mesoscale structure of the front in all cases is the tendency of the line of maximum horizontal convergence at the surface to move ahead of the line of maximum vertical vorticity. This phase shift appears to be related to, the propagation characteristics of the frontal system. Also, the mesoscale moist convection develops a cellular structure throughout the convective zone in the low-viscosity solution; the use of higher viscosity tends to suppress these cells, particularly near the surface.
    publisherAmerican Meteorological Society
    titleThe Evolution of an Observed Cold Front. Part I. Numerical Simulation
    typeJournal Paper
    journal volume39
    journal issue2
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1982)039<0296:TEOAOC>2.0.CO;2
    journal fristpage296
    journal lastpage327
    treeJournal of the Atmospheric Sciences:;1982:;Volume( 039 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian