YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Techniques of Linear Prediction for Systems with Periodic Statistics

    Source: Journal of the Atmospheric Sciences:;1981:;Volume( 038 ):;issue: 010::page 2275
    Author:
    Hasselmann, K.
    ,
    Barnett, T. P.
    DOI: 10.1175/1520-0469(1981)038<2275:TOLPFS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Many parameters that measure climatic variability have nonstationary statistics, that is, they depend strongly on the phase of the annual cycle. In this case normal statistical analysis techniques based on time-invariant models are inappropriate. Generalized methods accounting for seasonal nonstationarity (phase averaged or cyclostationary models) have been developed to treat such data. The methods are applied to the problem of predicting El Niño off South America. It is shown that El Niños may be predicted up to a year in advance with considerably more confidence and accuracy using phase-averaged models than with time-invariant models. In a second application surface air temperature anomalies are predicted over North America from Pacific Ocean sea surface temperatures. Again, the phase-averaged models consistently outperform models based on standard statistical procedures.
    • Download: (690.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Techniques of Linear Prediction for Systems with Periodic Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154204
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHasselmann, K.
    contributor authorBarnett, T. P.
    date accessioned2017-06-09T14:22:37Z
    date available2017-06-09T14:22:37Z
    date copyright1981/10/01
    date issued1981
    identifier issn0022-4928
    identifier otherams-18222.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154204
    description abstractMany parameters that measure climatic variability have nonstationary statistics, that is, they depend strongly on the phase of the annual cycle. In this case normal statistical analysis techniques based on time-invariant models are inappropriate. Generalized methods accounting for seasonal nonstationarity (phase averaged or cyclostationary models) have been developed to treat such data. The methods are applied to the problem of predicting El Niño off South America. It is shown that El Niños may be predicted up to a year in advance with considerably more confidence and accuracy using phase-averaged models than with time-invariant models. In a second application surface air temperature anomalies are predicted over North America from Pacific Ocean sea surface temperatures. Again, the phase-averaged models consistently outperform models based on standard statistical procedures.
    publisherAmerican Meteorological Society
    titleTechniques of Linear Prediction for Systems with Periodic Statistics
    typeJournal Paper
    journal volume38
    journal issue10
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1981)038<2275:TOLPFS>2.0.CO;2
    journal fristpage2275
    journal lastpage2283
    treeJournal of the Atmospheric Sciences:;1981:;Volume( 038 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian