YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Retrieval of Atmospheric Temperature Profiles from AMSU-A Measurement Using a Neural Network Approach

    Source: Journal of Atmospheric and Oceanic Technology:;2001:;volume( 018 ):;issue: 003::page 340
    Author:
    Shi, Lei
    DOI: 10.1175/1520-0426(2001)018<0340:ROATPF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Backpropagation neural networks are applied to retrieve atmospheric temperature profiles and tropopause variables from the NOAA-15 Advanced Microwave Sounding Unit-A (AMSU-A) measurement based on two different data sources. The first case uses direct acquisition of 15-channel AMSU-A data over the eastern United States and western Atlantic Ocean for the months of July 1998 and January 1999, and the second case uses recorded global AMSU-A data for several days of January 2000. The corresponding global analysis data from the National Centers for Environmental Prediction are employed to build the neural network training sets. The retrievals yield excellent results in the atmospheric temperature profiles from the surface to the 10-hPa pressure level. For the more generalized global data retrieval case, the root-mean-square (rms) deviation of temperature retrieval is 3.2°C at the surface, only 1.0° to 1.2°C in the midtroposphere, less than 1.5°C around the tropopause, and between 1.0° and 1.5°C in the stratosphere. Simultaneous retrieval of tropopause temperature, height, and pressure yields the rms deviations of 1.9°C, 0.58 km, and 18.1 hPa, respectively, for these variables. Within the scope of regional data, the trained neural network results in smaller values of temperature profile rms deviations than those of the global-data case. When compared to a linear regression approach, the neural network retrieval yields significantly better results for all the atmospheric levels. The neural network with parameters obtained from the network training optimizations can be easily applied to AMSU-A retrieval operationally.
    • Download: (99.98Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Retrieval of Atmospheric Temperature Profiles from AMSU-A Measurement Using a Neural Network Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154145
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorShi, Lei
    date accessioned2017-06-09T14:22:23Z
    date available2017-06-09T14:22:23Z
    date copyright2001/03/01
    date issued2001
    identifier issn0739-0572
    identifier otherams-1817.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154145
    description abstractBackpropagation neural networks are applied to retrieve atmospheric temperature profiles and tropopause variables from the NOAA-15 Advanced Microwave Sounding Unit-A (AMSU-A) measurement based on two different data sources. The first case uses direct acquisition of 15-channel AMSU-A data over the eastern United States and western Atlantic Ocean for the months of July 1998 and January 1999, and the second case uses recorded global AMSU-A data for several days of January 2000. The corresponding global analysis data from the National Centers for Environmental Prediction are employed to build the neural network training sets. The retrievals yield excellent results in the atmospheric temperature profiles from the surface to the 10-hPa pressure level. For the more generalized global data retrieval case, the root-mean-square (rms) deviation of temperature retrieval is 3.2°C at the surface, only 1.0° to 1.2°C in the midtroposphere, less than 1.5°C around the tropopause, and between 1.0° and 1.5°C in the stratosphere. Simultaneous retrieval of tropopause temperature, height, and pressure yields the rms deviations of 1.9°C, 0.58 km, and 18.1 hPa, respectively, for these variables. Within the scope of regional data, the trained neural network results in smaller values of temperature profile rms deviations than those of the global-data case. When compared to a linear regression approach, the neural network retrieval yields significantly better results for all the atmospheric levels. The neural network with parameters obtained from the network training optimizations can be easily applied to AMSU-A retrieval operationally.
    publisherAmerican Meteorological Society
    titleRetrieval of Atmospheric Temperature Profiles from AMSU-A Measurement Using a Neural Network Approach
    typeJournal Paper
    journal volume18
    journal issue3
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2001)018<0340:ROATPF>2.0.CO;2
    journal fristpage340
    journal lastpage347
    treeJournal of Atmospheric and Oceanic Technology:;2001:;volume( 018 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian