YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Growth and Vacillation Cycles of Disturbances in Southern Hemisphere Flows

    Source: Journal of the Atmospheric Sciences:;1981:;Volume( 038 ):;issue: 007::page 1360
    Author:
    Frederiksen, J. S.
    DOI: 10.1175/1520-0469(1981)038<1360:GAVCOD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The nonlinear interaction of initial single zonal wavenumber small-amplitude waves with Southern Hemisphere zonal flows characteristic of January and May is studied in a multilevel primitive equation spectral model with spherical geometry and viscous dissipation. For January, zonal wavenumber 7 and 10 waves are considered which occlude after a period of 8-10 days of almost exponential growth, with growth rates comparable with linear theory. Thereafter the eddy kinetic energy and wave structures vacillate with large-amplitude variations. Similar vacillations of the maximum mean zonal wind and temperature occur with the vertical shear considerably reduced as the flow becomes increasingly barotropic with the lower layers spinning up to a maximum speed comparable with that at the original jet center. As the waves amplify, their structures and poleward heat fluxes penetrate increasingly into the troposphere so that at the first peak in the vacillation cycle the streamfunction with dominant zonal wavenumber 7 is largest in the upper troposphere. The penetration of the shorter wavenumber 10 wave is less effective. At this stage and during the first barotropic decay period following the occlusion, the momentum fluxes also compare closely, in most respects, with observations with largest convergence in the upper troposphere. For May, viscous and inviscid integrations with wavenumber 10 waves are studied to examine the role of viscosity in determining the structure of waves in the nonlinear regime. During the viscous simulation, an initial wave growing on the polar jet rearranges its structure during the first 11 days and thereafter grows exponentially on the subtropical jet, occludes and shows indications of a vacillation cycle. In contrast, the wave grows exponentially on the polar jet in the inviscid integration. The changes in structure that occur during the viscous integration produce a dramatic improvement in the comparison with observations compared with linear results.
    • Download: (1.073Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Growth and Vacillation Cycles of Disturbances in Southern Hemisphere Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154128
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFrederiksen, J. S.
    date accessioned2017-06-09T14:22:21Z
    date available2017-06-09T14:22:21Z
    date copyright1981/07/01
    date issued1981
    identifier issn0022-4928
    identifier otherams-18154.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154128
    description abstractThe nonlinear interaction of initial single zonal wavenumber small-amplitude waves with Southern Hemisphere zonal flows characteristic of January and May is studied in a multilevel primitive equation spectral model with spherical geometry and viscous dissipation. For January, zonal wavenumber 7 and 10 waves are considered which occlude after a period of 8-10 days of almost exponential growth, with growth rates comparable with linear theory. Thereafter the eddy kinetic energy and wave structures vacillate with large-amplitude variations. Similar vacillations of the maximum mean zonal wind and temperature occur with the vertical shear considerably reduced as the flow becomes increasingly barotropic with the lower layers spinning up to a maximum speed comparable with that at the original jet center. As the waves amplify, their structures and poleward heat fluxes penetrate increasingly into the troposphere so that at the first peak in the vacillation cycle the streamfunction with dominant zonal wavenumber 7 is largest in the upper troposphere. The penetration of the shorter wavenumber 10 wave is less effective. At this stage and during the first barotropic decay period following the occlusion, the momentum fluxes also compare closely, in most respects, with observations with largest convergence in the upper troposphere. For May, viscous and inviscid integrations with wavenumber 10 waves are studied to examine the role of viscosity in determining the structure of waves in the nonlinear regime. During the viscous simulation, an initial wave growing on the polar jet rearranges its structure during the first 11 days and thereafter grows exponentially on the subtropical jet, occludes and shows indications of a vacillation cycle. In contrast, the wave grows exponentially on the polar jet in the inviscid integration. The changes in structure that occur during the viscous integration produce a dramatic improvement in the comparison with observations compared with linear results.
    publisherAmerican Meteorological Society
    titleGrowth and Vacillation Cycles of Disturbances in Southern Hemisphere Flows
    typeJournal Paper
    journal volume38
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1981)038<1360:GAVCOD>2.0.CO;2
    journal fristpage1360
    journal lastpage1375
    treeJournal of the Atmospheric Sciences:;1981:;Volume( 038 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian