YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing

    Source: Journal of the Atmospheric Sciences:;1981:;Volume( 038 ):;issue: 006::page 1179
    Author:
    Hoskins, Brian J.
    ,
    Karoly, David J.
    DOI: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Motivated by some results from barotropic models, a linearized steady-state five-layer baroclinic model is used to study the response of a spherical atmosphere to thermal and orographic forcing. At low levels the significant perturbations are confined to the neighborhood of the source and for midlatitude thermal forcing these perturbations are crucially dependent on the vertical distribution of the source. In the upper troposphere the sources generate wavetrains which are very similar to those given by barotropic models. For a low-latitude source, long wavelengths propagate strongly polewards as well as eastwards. Shorter wavelengths are trapped equatorward of the poleward flank of the jet, resulting in a split of the wave-trains at this latitude. Using reasonable dissipation magnitudes, the easiest way to produce an appreciable response in middle and high latitudes is by subtropical forcing. These results suggest an explanation for the shapes of patterns described in observational studies. The theory for waves propagating in a slowly varying medium is applied to Rossby waves propagating in a barotropic atmosphere. The slow variation of the medium is associated with the sphericity of the domain and the latitudinal structure of the zonal wind. Rays along which wave activity propagates, the speeds of propagation, and the amplitudes and phases along these rays are determined for a constant angular velocity basic flow as well as a more realistic jet flow. They agree well with the observational and numerical model results and give a simple interpretation of them.
    • Download: (1.435Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154114
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHoskins, Brian J.
    contributor authorKaroly, David J.
    date accessioned2017-06-09T14:22:18Z
    date available2017-06-09T14:22:18Z
    date copyright1981/06/01
    date issued1981
    identifier issn0022-4928
    identifier otherams-18141.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154114
    description abstractMotivated by some results from barotropic models, a linearized steady-state five-layer baroclinic model is used to study the response of a spherical atmosphere to thermal and orographic forcing. At low levels the significant perturbations are confined to the neighborhood of the source and for midlatitude thermal forcing these perturbations are crucially dependent on the vertical distribution of the source. In the upper troposphere the sources generate wavetrains which are very similar to those given by barotropic models. For a low-latitude source, long wavelengths propagate strongly polewards as well as eastwards. Shorter wavelengths are trapped equatorward of the poleward flank of the jet, resulting in a split of the wave-trains at this latitude. Using reasonable dissipation magnitudes, the easiest way to produce an appreciable response in middle and high latitudes is by subtropical forcing. These results suggest an explanation for the shapes of patterns described in observational studies. The theory for waves propagating in a slowly varying medium is applied to Rossby waves propagating in a barotropic atmosphere. The slow variation of the medium is associated with the sphericity of the domain and the latitudinal structure of the zonal wind. Rays along which wave activity propagates, the speeds of propagation, and the amplitudes and phases along these rays are determined for a constant angular velocity basic flow as well as a more realistic jet flow. They agree well with the observational and numerical model results and give a simple interpretation of them.
    publisherAmerican Meteorological Society
    titleThe Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing
    typeJournal Paper
    journal volume38
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
    journal fristpage1179
    journal lastpage1196
    treeJournal of the Atmospheric Sciences:;1981:;Volume( 038 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian