YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Martian General Circulation Experiment with Large Topography

    Source: Journal of the Atmospheric Sciences:;1981:;Volume( 038 ):;issue: 001::page 3
    Author:
    Pollack, James B.
    ,
    Leovy, Conway B.
    ,
    Greiman, Paul W.
    ,
    Mintz, Yale
    DOI: 10.1175/1520-0469(1981)038<0003:AMGCEW>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A three-layer general circulation model, used to simulate the Martian atmosphere, is described and results are presented. The model assumes a dust-free pure C02 atmosphere and allows for a diurnally- varying convective boundary layer. Smoothed Martian topography and albedo variations are incorporated. The simulation described is for the period near southern winter solstice, season of the Viking landings. The zonally-averaged circulation, mass, heat and momentum balances, and properties of stationary and transient waves are described in some detail, and are compared with results of previous simulations of the Martian general circulation, with related features of the Earth's general circulation, and with observed characteristics of the Martian atmosphere. The principal conclusions are the following: 1) The simulated zonally-averaged circulation is not very sensitive to differences between this model and the earlier general circulation model of Leovy and Mintz (1969), and compares reasonably well with observations, except for differences attributable to dust and season. 2) The meridional mass flow produced by the seasonal condensation of CO2, in the winter polar region has a major influence on the circulation, but, because of the weak influence of atmospheric heat transport, it is controlled almost entirely by radiation. 3) Quasi-barotropic stationary waves forced kinematically by the topography and resembling topographically-forced terrestrial planetary waves, are generated by the model in the winter hemisphere region of strong eastward flow, while baroclinic stationary waves are thermally forced by topography in the tropics and summer subtropics. 4) Transient baroclinically unstable waves, of somewhat lower dominant wavenumber than those found on the Earth, are generated in winter midlatitudes and their amplitudes, wavenumbers and phase speeds closely agree with what has been deduced from the Viking lander observations.
    • Download: (1.910Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Martian General Circulation Experiment with Large Topography

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4154021
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorPollack, James B.
    contributor authorLeovy, Conway B.
    contributor authorGreiman, Paul W.
    contributor authorMintz, Yale
    date accessioned2017-06-09T14:22:01Z
    date available2017-06-09T14:22:01Z
    date copyright1981/01/01
    date issued1981
    identifier issn0022-4928
    identifier otherams-18058.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4154021
    description abstractA three-layer general circulation model, used to simulate the Martian atmosphere, is described and results are presented. The model assumes a dust-free pure C02 atmosphere and allows for a diurnally- varying convective boundary layer. Smoothed Martian topography and albedo variations are incorporated. The simulation described is for the period near southern winter solstice, season of the Viking landings. The zonally-averaged circulation, mass, heat and momentum balances, and properties of stationary and transient waves are described in some detail, and are compared with results of previous simulations of the Martian general circulation, with related features of the Earth's general circulation, and with observed characteristics of the Martian atmosphere. The principal conclusions are the following: 1) The simulated zonally-averaged circulation is not very sensitive to differences between this model and the earlier general circulation model of Leovy and Mintz (1969), and compares reasonably well with observations, except for differences attributable to dust and season. 2) The meridional mass flow produced by the seasonal condensation of CO2, in the winter polar region has a major influence on the circulation, but, because of the weak influence of atmospheric heat transport, it is controlled almost entirely by radiation. 3) Quasi-barotropic stationary waves forced kinematically by the topography and resembling topographically-forced terrestrial planetary waves, are generated by the model in the winter hemisphere region of strong eastward flow, while baroclinic stationary waves are thermally forced by topography in the tropics and summer subtropics. 4) Transient baroclinically unstable waves, of somewhat lower dominant wavenumber than those found on the Earth, are generated in winter midlatitudes and their amplitudes, wavenumbers and phase speeds closely agree with what has been deduced from the Viking lander observations.
    publisherAmerican Meteorological Society
    titleA Martian General Circulation Experiment with Large Topography
    typeJournal Paper
    journal volume38
    journal issue1
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1981)038<0003:AMGCEW>2.0.CO;2
    journal fristpage3
    journal lastpage29
    treeJournal of the Atmospheric Sciences:;1981:;Volume( 038 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian