YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cumulonimbus Vertical Velocity Events in GATE. Part II: Synthesis and Model Core Structure

    Source: Journal of the Atmospheric Sciences:;1980:;Volume( 037 ):;issue: 011::page 2458
    Author:
    Zipser, E. J.
    ,
    LeMone, M. A.
    DOI: 10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The properties of convective drafts and cores are presented in Part I. By our definition a convective updraft must have a positive vertical velocity for 0.5 km, and exceed 0.5 m s?1 for 1 s; a convective updraft core must exceed 1 m s?1 for 0.5 km. Downdrafts and downdraft cores are defined analogously. Here the properties of the drafts and cores are compared to results of previous work. In addition, the implications of the results in Part I are discussed. GATE cores and drafts are comparable in size and intensity to those measured in hurricanes but weaker than those measured in continental thunderstorms. The lesser intensity seems related to the nearly moist adiabatic GATE sounding. The mass flux by GATE cores is consistent with large-scale requirements. It is fairly evenly distributed over a range of core size and intensity. Updraft core vertical velocity and diameter are positively correlated, primarily the result of a few large strong events. The vast majority of GATE convective cores are sufficiently weak, with mean vertical velocities < 3?5 m s?1, that the time scale for air starting at cloud base to reach the upper troposphere can be in excess of 1 h. The microphysical implications of such long time scales are discussed. They include large fractional rainout from the warm part of the cloud, the presence of ice at relatively warm temperatures, and rapid decrease of radar reflectivity with height above the 0°C level. Usually the clouds in GATE were part of a larger, organized mesoscale system. The typical distribution of cumulonimbus clouds, cores and drafts in such a system is synthesized by combining our results with other GATE results. A schematic updraft core and downdraft core in the middle troposphere are presented, emphasizing that these entities were rather narrow and weak in GATE clouds.
    • Download: (1002.Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cumulonimbus Vertical Velocity Events in GATE. Part II: Synthesis and Model Core Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4153987
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorZipser, E. J.
    contributor authorLeMone, M. A.
    date accessioned2017-06-09T14:21:54Z
    date available2017-06-09T14:21:54Z
    date copyright1980/11/01
    date issued1980
    identifier issn0022-4928
    identifier otherams-18027.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4153987
    description abstractThe properties of convective drafts and cores are presented in Part I. By our definition a convective updraft must have a positive vertical velocity for 0.5 km, and exceed 0.5 m s?1 for 1 s; a convective updraft core must exceed 1 m s?1 for 0.5 km. Downdrafts and downdraft cores are defined analogously. Here the properties of the drafts and cores are compared to results of previous work. In addition, the implications of the results in Part I are discussed. GATE cores and drafts are comparable in size and intensity to those measured in hurricanes but weaker than those measured in continental thunderstorms. The lesser intensity seems related to the nearly moist adiabatic GATE sounding. The mass flux by GATE cores is consistent with large-scale requirements. It is fairly evenly distributed over a range of core size and intensity. Updraft core vertical velocity and diameter are positively correlated, primarily the result of a few large strong events. The vast majority of GATE convective cores are sufficiently weak, with mean vertical velocities < 3?5 m s?1, that the time scale for air starting at cloud base to reach the upper troposphere can be in excess of 1 h. The microphysical implications of such long time scales are discussed. They include large fractional rainout from the warm part of the cloud, the presence of ice at relatively warm temperatures, and rapid decrease of radar reflectivity with height above the 0°C level. Usually the clouds in GATE were part of a larger, organized mesoscale system. The typical distribution of cumulonimbus clouds, cores and drafts in such a system is synthesized by combining our results with other GATE results. A schematic updraft core and downdraft core in the middle troposphere are presented, emphasizing that these entities were rather narrow and weak in GATE clouds.
    publisherAmerican Meteorological Society
    titleCumulonimbus Vertical Velocity Events in GATE. Part II: Synthesis and Model Core Structure
    typeJournal Paper
    journal volume37
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1980)037<2458:CVVEIG>2.0.CO;2
    journal fristpage2458
    journal lastpage2469
    treeJournal of the Atmospheric Sciences:;1980:;Volume( 037 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian