YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Eddy Fluxes of Angular Momentum on Model Hurricane Development

    Source: Journal of the Atmospheric Sciences:;1980:;Volume( 037 ):;issue: 007::page 1603
    Author:
    Challa, Malakondayya
    ,
    Pfeffer, Richard L.
    DOI: 10.1175/1520-0469(1980)037<1603:EOEFOA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The nonlinear effects of asymmetries associated with synoptic-scale waves in which hurricanes usually form are simulated by introducing steady-state and time varying eddy fluxes of angular momentum in a parameterized way into Sundqvist's (1970) symmetric model for hurricane development. The equations are integrated numerically using different initial conditions and different distributions of the parameterized eddy fluxes. It is found that angular momentum flux convergences, with magnitudes comparable to those measured from atmospheric data, markedly accelerate hurricane development, and can initiate a model hurricane when the sea surface temperature is slightly subcritical such that the purely symmetric model fails to produce a vortex of hurricane intensity. Different distributions of the eddy flux of momentum produce different rates of growth, different final intensifies and different vortex sizes. The most effective distributions are those in which the vertical derivative of the angular momentum flux convergence is large near sea level, where it acts as a forcing function for the symmetric radial circulation, drawing moist boundary-layer air into the hurricane from the surroundings. In this way, it enhances the Ekman layer inflow, particularly at the early stages when the sea level vortex is weak. On the other hand, an angular momentum flux divergence produced by the eddies is found to suppress model hurricane development, even when the sea surface temperature is supercritical such that the purely symmetric model yields explosive hurricane growth. This is because it produces a radial circulation which opposes the Ekman layer inflow. The contributions of the different terms in the kinetic energy equation in the purely symmetric integration are compared with those in one of the integrations with an eddy flux convergence of angular momentum. The calculations reveal that the kinetic energy production and dissipation are both larger in the latter case than in the former, and that the production exceeds the dissipation by a greater amount in the latter case, leading to a larger kinetic energy tendency and thereby more explosive hurricane growth.
    • Download: (894.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Eddy Fluxes of Angular Momentum on Model Hurricane Development

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4153912
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorChalla, Malakondayya
    contributor authorPfeffer, Richard L.
    date accessioned2017-06-09T14:21:39Z
    date available2017-06-09T14:21:39Z
    date copyright1980/07/01
    date issued1980
    identifier issn0022-4928
    identifier otherams-17960.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4153912
    description abstractThe nonlinear effects of asymmetries associated with synoptic-scale waves in which hurricanes usually form are simulated by introducing steady-state and time varying eddy fluxes of angular momentum in a parameterized way into Sundqvist's (1970) symmetric model for hurricane development. The equations are integrated numerically using different initial conditions and different distributions of the parameterized eddy fluxes. It is found that angular momentum flux convergences, with magnitudes comparable to those measured from atmospheric data, markedly accelerate hurricane development, and can initiate a model hurricane when the sea surface temperature is slightly subcritical such that the purely symmetric model fails to produce a vortex of hurricane intensity. Different distributions of the eddy flux of momentum produce different rates of growth, different final intensifies and different vortex sizes. The most effective distributions are those in which the vertical derivative of the angular momentum flux convergence is large near sea level, where it acts as a forcing function for the symmetric radial circulation, drawing moist boundary-layer air into the hurricane from the surroundings. In this way, it enhances the Ekman layer inflow, particularly at the early stages when the sea level vortex is weak. On the other hand, an angular momentum flux divergence produced by the eddies is found to suppress model hurricane development, even when the sea surface temperature is supercritical such that the purely symmetric model yields explosive hurricane growth. This is because it produces a radial circulation which opposes the Ekman layer inflow. The contributions of the different terms in the kinetic energy equation in the purely symmetric integration are compared with those in one of the integrations with an eddy flux convergence of angular momentum. The calculations reveal that the kinetic energy production and dissipation are both larger in the latter case than in the former, and that the production exceeds the dissipation by a greater amount in the latter case, leading to a larger kinetic energy tendency and thereby more explosive hurricane growth.
    publisherAmerican Meteorological Society
    titleEffects of Eddy Fluxes of Angular Momentum on Model Hurricane Development
    typeJournal Paper
    journal volume37
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1980)037<1603:EOEFOA>2.0.CO;2
    journal fristpage1603
    journal lastpage1618
    treeJournal of the Atmospheric Sciences:;1980:;Volume( 037 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian