YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Theoretical Study of Three-Dimensional Barotropic Instability with Applications to the Upper Stratosphere

    Source: Journal of the Atmospheric Sciences:;1979:;Volume( 036 ):;issue: 005::page 908
    Author:
    Pfister, Leonhard
    DOI: 10.1175/1520-0469(1979)036<0908:ATSOTD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Satellite and rocket observations indicate that barotropically unstable waves may exist in the upper stratosphere. To gain some understanding of the effects of vertical mean flow variation on barotropic instability with a view toward stratospheric applications, a numerical method used by other investigators for tropospheric baroclinic instability was employed to establish the structures, phase speeds and growth rates of the normal modes of a number of idealized, barotropically unstable, mean zonal wind fields in a quasi-geostrophic, Boussinesq framework. Both horizontally symmetric and asymmetric flows were considered, but in all cases the flows were vertically symmetric, with depth scales large enough to preclude baroclinic instability. Results showed that the horizontal structure of the waves was affected only slightly by vertical mean flow variation. Growth rates, however, were strongly affected, with reductions of 40% (horizontally symmetric) and 30% (horizontally asymmetric) from the respective two-dimensional values for the largest vertical scales expected in the stratosphere. Vertical structure displayed phase variation in the direction of mean wind shear and amplitude decay with distance from the level of strongest horizontal shear. The scale of variation was on the order of the geometric mean of the vertical mean flow scale and the vertical penetration depth, in analogy with baroclinic waves in latitudinally slowly varying flows. Some deviations from this behavior was found for horizontally symmetric flows, however, where the vertical scale of variation of the amplitude significantly exceeded that of the phase.
    • Download: (1.056Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Theoretical Study of Three-Dimensional Barotropic Instability with Applications to the Upper Stratosphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4153628
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorPfister, Leonhard
    date accessioned2017-06-09T14:20:48Z
    date available2017-06-09T14:20:48Z
    date copyright1979/05/01
    date issued1979
    identifier issn0022-4928
    identifier otherams-17704.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4153628
    description abstractSatellite and rocket observations indicate that barotropically unstable waves may exist in the upper stratosphere. To gain some understanding of the effects of vertical mean flow variation on barotropic instability with a view toward stratospheric applications, a numerical method used by other investigators for tropospheric baroclinic instability was employed to establish the structures, phase speeds and growth rates of the normal modes of a number of idealized, barotropically unstable, mean zonal wind fields in a quasi-geostrophic, Boussinesq framework. Both horizontally symmetric and asymmetric flows were considered, but in all cases the flows were vertically symmetric, with depth scales large enough to preclude baroclinic instability. Results showed that the horizontal structure of the waves was affected only slightly by vertical mean flow variation. Growth rates, however, were strongly affected, with reductions of 40% (horizontally symmetric) and 30% (horizontally asymmetric) from the respective two-dimensional values for the largest vertical scales expected in the stratosphere. Vertical structure displayed phase variation in the direction of mean wind shear and amplitude decay with distance from the level of strongest horizontal shear. The scale of variation was on the order of the geometric mean of the vertical mean flow scale and the vertical penetration depth, in analogy with baroclinic waves in latitudinally slowly varying flows. Some deviations from this behavior was found for horizontally symmetric flows, however, where the vertical scale of variation of the amplitude significantly exceeded that of the phase.
    publisherAmerican Meteorological Society
    titleA Theoretical Study of Three-Dimensional Barotropic Instability with Applications to the Upper Stratosphere
    typeJournal Paper
    journal volume36
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1979)036<0908:ATSOTD>2.0.CO;2
    journal fristpage908
    journal lastpage920
    treeJournal of the Atmospheric Sciences:;1979:;Volume( 036 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian