YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Convolution of AMSU-B to AMSU-A

    Source: Journal of Atmospheric and Oceanic Technology:;2000:;volume( 017 ):;issue: 009::page 1215
    Author:
    Bennartz, Ralf
    DOI: 10.1175/1520-0426(2000)017<1215:OCOABT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In order to find an optimal convolution of the Advanced Microwave Sounding Unit (AMSU) -B to AMSU-A resolution the scan characteristics of AMSU-A and AMSU-B on board NOAA-15 are examined. A set of coefficients for this degradation is derived using the Backus?Gilbert technique. A 7 ? 7 set of adjacent AMSU-B pixels is used where the center pixel is the one closest to a given AMSU-A observation. The error characteristics of the convolution are investigated and except for the two outermost footprints a good reproduction of the spatial sensitivity of the AMSU-A by the convolved AMSU-B is obtained. For a NOAA-15 overpass over inhomogeneous terrain AMSU-A data at 89 GHz were compared to convolved AMSU-B data at the same frequency. The root-mean-square deviation between the so-convolved AMSU-B data and the AMSU-A data was on average 1.7 K, including a systematic deviation of ?1 K of AMSU-B to AMSU-A. In comparison, simple, equally weighted averages of AMSU-B data produce rms errors in the order of 4 K and large deviations in regions where gradients in the brightness temperatures occur. To apply the Backus?Gilbert technique the AMSU?s effective field of view (EFOV) as a function of the scan position was determined. For the continuously scanning AMSU-B the integration time of 18 ms per observation in conjunction with the sensors rotation leads to a considerable broadening of the antenna pattern in cross-track direction and thus to an increase of the EFOV as compared to the instantaneous field of view (IFOV). This does not occur for the stepwise scanning AMSU-A where the IFOV equals the EFOV (neglecting the second-order effects induced by the ?1-km movement of the subsatellite point during AMSU-A integration). Analytical expressions to calculate the AMSU-A and AMSU-B footprint sizes as functions of their respective scan positions were derived. These expressions exhibit rms deviations to the actual footprint size of 0.5 km with maximum deviations of less than 1 km.
    • Download: (219.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Convolution of AMSU-B to AMSU-A

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4153478
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorBennartz, Ralf
    date accessioned2017-06-09T14:20:23Z
    date available2017-06-09T14:20:23Z
    date copyright2000/09/01
    date issued2000
    identifier issn0739-0572
    identifier otherams-1757.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4153478
    description abstractIn order to find an optimal convolution of the Advanced Microwave Sounding Unit (AMSU) -B to AMSU-A resolution the scan characteristics of AMSU-A and AMSU-B on board NOAA-15 are examined. A set of coefficients for this degradation is derived using the Backus?Gilbert technique. A 7 ? 7 set of adjacent AMSU-B pixels is used where the center pixel is the one closest to a given AMSU-A observation. The error characteristics of the convolution are investigated and except for the two outermost footprints a good reproduction of the spatial sensitivity of the AMSU-A by the convolved AMSU-B is obtained. For a NOAA-15 overpass over inhomogeneous terrain AMSU-A data at 89 GHz were compared to convolved AMSU-B data at the same frequency. The root-mean-square deviation between the so-convolved AMSU-B data and the AMSU-A data was on average 1.7 K, including a systematic deviation of ?1 K of AMSU-B to AMSU-A. In comparison, simple, equally weighted averages of AMSU-B data produce rms errors in the order of 4 K and large deviations in regions where gradients in the brightness temperatures occur. To apply the Backus?Gilbert technique the AMSU?s effective field of view (EFOV) as a function of the scan position was determined. For the continuously scanning AMSU-B the integration time of 18 ms per observation in conjunction with the sensors rotation leads to a considerable broadening of the antenna pattern in cross-track direction and thus to an increase of the EFOV as compared to the instantaneous field of view (IFOV). This does not occur for the stepwise scanning AMSU-A where the IFOV equals the EFOV (neglecting the second-order effects induced by the ?1-km movement of the subsatellite point during AMSU-A integration). Analytical expressions to calculate the AMSU-A and AMSU-B footprint sizes as functions of their respective scan positions were derived. These expressions exhibit rms deviations to the actual footprint size of 0.5 km with maximum deviations of less than 1 km.
    publisherAmerican Meteorological Society
    titleOptimal Convolution of AMSU-B to AMSU-A
    typeJournal Paper
    journal volume17
    journal issue9
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2000)017<1215:OCOABT>2.0.CO;2
    journal fristpage1215
    journal lastpage1225
    treeJournal of Atmospheric and Oceanic Technology:;2000:;volume( 017 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian