YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Velocity Biases of Adaptive Filter Estimates in Heterodyne Doppler Lidar Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;2000:;volume( 017 ):;issue: 009::page 1189
    Author:
    Dabas, Alain M.
    ,
    Drobinski, Philippe
    ,
    Flamant, Pierre H.
    DOI: 10.1175/1520-0426(2000)017<1189:VBOAFE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Frequency estimates by heterodyne Doppler lidar (HDL) may result in velocity bias due to the atmospheric speckle effect and an asymmetrical power spectrum of the probing pulse, as discussed in a previous paper by Dabas et al. In this paper, it has been shown that the velocity bias can be accounted for and corrected on a single measurement basis for a mean frequency estimator (e.g., pulse pair). In the present paper, a new procedure is proposed and validated for adaptive filters (e.g., Levin, notch, etc.), which accounts for nonstationary conditions such as wind turbulence, wind shear, and backscattered power gradient. The present study is conducted using both numerical simulations and actual data taken by a 10-?m HDL.
    • Download: (211.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Velocity Biases of Adaptive Filter Estimates in Heterodyne Doppler Lidar Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4153456
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorDabas, Alain M.
    contributor authorDrobinski, Philippe
    contributor authorFlamant, Pierre H.
    date accessioned2017-06-09T14:20:19Z
    date available2017-06-09T14:20:19Z
    date copyright2000/09/01
    date issued2000
    identifier issn0739-0572
    identifier otherams-1755.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4153456
    description abstractFrequency estimates by heterodyne Doppler lidar (HDL) may result in velocity bias due to the atmospheric speckle effect and an asymmetrical power spectrum of the probing pulse, as discussed in a previous paper by Dabas et al. In this paper, it has been shown that the velocity bias can be accounted for and corrected on a single measurement basis for a mean frequency estimator (e.g., pulse pair). In the present paper, a new procedure is proposed and validated for adaptive filters (e.g., Levin, notch, etc.), which accounts for nonstationary conditions such as wind turbulence, wind shear, and backscattered power gradient. The present study is conducted using both numerical simulations and actual data taken by a 10-?m HDL.
    publisherAmerican Meteorological Society
    titleVelocity Biases of Adaptive Filter Estimates in Heterodyne Doppler Lidar Measurements
    typeJournal Paper
    journal volume17
    journal issue9
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(2000)017<1189:VBOAFE>2.0.CO;2
    journal fristpage1189
    journal lastpage1202
    treeJournal of Atmospheric and Oceanic Technology:;2000:;volume( 017 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian