YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Response of the NCAR General Circulation Model to North Pacific Sea Surface Temperature Anomalies

    Source: Journal of the Atmospheric Sciences:;1978:;Volume( 035 ):;issue: 007::page 1164
    Author:
    Huang, Joseph C. K.
    DOI: 10.1175/1520-0469(1978)035<1164:ROTNGC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The general circulation model (GCM) of the National Center for Atmospheric Research was used to investigate the effects of anomalous sea surface temperature (SST) patterns in the mid-latitudes of the North Pacific Ocean on atmospheric circulations. One of the most frequently observed SST anomaly (SSTA) patterns, a ?cold pool? of water in the west and a ?warm pool? in the cast (from 35 to 55°N) with magnitudes ±4°C of the temperature of the surrounding water, was superimposed on the seasonally varying oceanic temperature as the thermal boundary condition in the North Pacific of the atmospheric GCM for the anomaly experiment Three similar experiments, one the control, two the noise and three an exaggerated SSTA, were run simultaneously. Time integrations for all cases were carried out for 120 days, beginning on 15 January. Preliminary results indicate that cyclonic activities are strengthened above the warm SSTA and suppressed above the cold SSTA. A direct thermal circulation is induced in the vertical section: warm air rises and a warm-core low forms above the warm SSTA; cold air sinks and a cold-core high forms above the cold SSTA. The Aleutian low is elongated, shifted northeast and deepened. The planetary wave in midlatitudes shows ridging above the cold SSTA and troughing above the warm SSTA in the lower troposphere. A westward tilting of the trough with increasing altitude above the warm SSTA is also discerned. The westerlies north of the warm SSTA are much strengthened. The westerlies are also stronger in the western as well as eastern North Pacific region, but are much weaker in the central North Pacific region. Some effects on the equatorial circulation due to the existence of midlatitude SSTA's are discussed and a transocean teleconnection is indicated. Certain general features of the experimental results support the hypothesis of Namias (1972). However, they did not conclusively demonstrate the significance of downstream oceanic influences on the weather pattern over a time period longer than one season.
    • Download: (1.295Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Response of the NCAR General Circulation Model to North Pacific Sea Surface Temperature Anomalies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4153407
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHuang, Joseph C. K.
    date accessioned2017-06-09T14:20:12Z
    date available2017-06-09T14:20:12Z
    date copyright1978/07/01
    date issued1978
    identifier issn0022-4928
    identifier otherams-17505.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4153407
    description abstractThe general circulation model (GCM) of the National Center for Atmospheric Research was used to investigate the effects of anomalous sea surface temperature (SST) patterns in the mid-latitudes of the North Pacific Ocean on atmospheric circulations. One of the most frequently observed SST anomaly (SSTA) patterns, a ?cold pool? of water in the west and a ?warm pool? in the cast (from 35 to 55°N) with magnitudes ±4°C of the temperature of the surrounding water, was superimposed on the seasonally varying oceanic temperature as the thermal boundary condition in the North Pacific of the atmospheric GCM for the anomaly experiment Three similar experiments, one the control, two the noise and three an exaggerated SSTA, were run simultaneously. Time integrations for all cases were carried out for 120 days, beginning on 15 January. Preliminary results indicate that cyclonic activities are strengthened above the warm SSTA and suppressed above the cold SSTA. A direct thermal circulation is induced in the vertical section: warm air rises and a warm-core low forms above the warm SSTA; cold air sinks and a cold-core high forms above the cold SSTA. The Aleutian low is elongated, shifted northeast and deepened. The planetary wave in midlatitudes shows ridging above the cold SSTA and troughing above the warm SSTA in the lower troposphere. A westward tilting of the trough with increasing altitude above the warm SSTA is also discerned. The westerlies north of the warm SSTA are much strengthened. The westerlies are also stronger in the western as well as eastern North Pacific region, but are much weaker in the central North Pacific region. Some effects on the equatorial circulation due to the existence of midlatitude SSTA's are discussed and a transocean teleconnection is indicated. Certain general features of the experimental results support the hypothesis of Namias (1972). However, they did not conclusively demonstrate the significance of downstream oceanic influences on the weather pattern over a time period longer than one season.
    publisherAmerican Meteorological Society
    titleResponse of the NCAR General Circulation Model to North Pacific Sea Surface Temperature Anomalies
    typeJournal Paper
    journal volume35
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1978)035<1164:ROTNGC>2.0.CO;2
    journal fristpage1164
    journal lastpage1179
    treeJournal of the Atmospheric Sciences:;1978:;Volume( 035 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian