contributor author | Rao, K. S. | |
contributor author | Wyngaard, J. C. | |
contributor author | Coté, O. R. | |
date accessioned | 2017-06-09T14:17:25Z | |
date available | 2017-06-09T14:17:25Z | |
date copyright | 1974/04/01 | |
date issued | 1974 | |
identifier issn | 0022-4928 | |
identifier other | ams-16539.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4152333 | |
description abstract | The effects of an abrupt change of surface roughness on the mean flow and turbulence structure in the neutral surface layer are numerically investigated by a higher-order turbulence closure theory, which includes dynamical equations for Reynolds stresses and the viscous dissipation rate. The closed system of governing equations, together with the specified initial and boundary conditions, is solved by an explicit finite-difference method on a digital computer. The numerical model predicts the distributions of mean wind, shear stress, turbulent energy and other quantities, with no a priori assumptions regarding the distributions of any of these variables in the transition region. The distributions of the nondimensional wind shear, the dissipation and mixing length scales, and the ratio of stress to turbulent kinetic energy are shown to differ significantly from their equilibrium flow variations. | |
publisher | American Meteorological Society | |
title | The Structure of the Two-Dimensional Internal Boundary Layer over a Sudden Change of Surface Roughness | |
type | Journal Paper | |
journal volume | 31 | |
journal issue | 3 | |
journal title | Journal of the Atmospheric Sciences | |
identifier doi | 10.1175/1520-0469(1974)031<0738:TSOTTD>2.0.CO;2 | |
journal fristpage | 738 | |
journal lastpage | 746 | |
tree | Journal of the Atmospheric Sciences:;1974:;Volume( 031 ):;issue: 003 | |
contenttype | Fulltext | |