YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Error Analysis for Some Ground Validation Designs for Satellite Observations of Precipitation

    Source: Journal of Atmospheric and Oceanic Technology:;1999:;volume( 016 ):;issue: 012::page 1949
    Author:
    Ha, Eunho
    ,
    North, Gerald R.
    DOI: 10.1175/1520-0426(1999)016<1949:EAFSGV>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this paper point gauges are used in an analysis of hypothetical ground validation experiments for satellite-based estimates of precipitation rates. The ground and satellite measurements are fundamentally different since the gauge can sample continuously in time but at a discrete point, while the satellite samples an area average (typically 20 km across) but a snapshot in time. The design consists of comparing a sequence of pairs of measurements taken from the ground and from space. Since real rain has a large nonzero contribution at zero rain rate, the following ground truth designs are proposed: design 1 uses all pairs, design 2 uses the pairs only when the field-of-view satellite average has rain, and design 3 uses the pairs only when the gauge has rain. The error distribution of each design is derived theoretically for a Bernoulli spatial random field with different horizontal resolutions. It is found that design 3 cannot be used as a ground-truth design due to its large design bias. The mean-square error is used as an index of accuracy in estimating the ground measurement by satellite measurement. It is shown that there is a relationship between the mean-square error of design 1 and design 2 for the Bernoulli random field. Using this technique, the authors derive the number of satellite overpasses necessary to detect a satellite retrieval bias, which is as large as 10% of the natural variability.
    • Download: (125.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Error Analysis for Some Ground Validation Designs for Satellite Observations of Precipitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4152278
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorHa, Eunho
    contributor authorNorth, Gerald R.
    date accessioned2017-06-09T14:17:16Z
    date available2017-06-09T14:17:16Z
    date copyright1999/12/01
    date issued1999
    identifier issn0739-0572
    identifier otherams-1649.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4152278
    description abstractIn this paper point gauges are used in an analysis of hypothetical ground validation experiments for satellite-based estimates of precipitation rates. The ground and satellite measurements are fundamentally different since the gauge can sample continuously in time but at a discrete point, while the satellite samples an area average (typically 20 km across) but a snapshot in time. The design consists of comparing a sequence of pairs of measurements taken from the ground and from space. Since real rain has a large nonzero contribution at zero rain rate, the following ground truth designs are proposed: design 1 uses all pairs, design 2 uses the pairs only when the field-of-view satellite average has rain, and design 3 uses the pairs only when the gauge has rain. The error distribution of each design is derived theoretically for a Bernoulli spatial random field with different horizontal resolutions. It is found that design 3 cannot be used as a ground-truth design due to its large design bias. The mean-square error is used as an index of accuracy in estimating the ground measurement by satellite measurement. It is shown that there is a relationship between the mean-square error of design 1 and design 2 for the Bernoulli random field. Using this technique, the authors derive the number of satellite overpasses necessary to detect a satellite retrieval bias, which is as large as 10% of the natural variability.
    publisherAmerican Meteorological Society
    titleError Analysis for Some Ground Validation Designs for Satellite Observations of Precipitation
    typeJournal Paper
    journal volume16
    journal issue12
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1999)016<1949:EAFSGV>2.0.CO;2
    journal fristpage1949
    journal lastpage1957
    treeJournal of Atmospheric and Oceanic Technology:;1999:;volume( 016 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian