YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Offshore Tower Shading Effects on In-Water Optical Measurements

    Source: Journal of Atmospheric and Oceanic Technology:;1999:;volume( 016 ):;issue: 011::page 1767
    Author:
    Zibordi, Giuseppe
    ,
    Doyle, John Piero
    ,
    Hooker, Stanford B.
    DOI: 10.1175/1520-0426(1999)016<1767:OTSEOI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A field campaign was performed to estimate the shading effect induced on in-water irradiance and radiance measurements taken in the immediate vicinity of the Acqua Alta Oceanographic Tower (AAOT), located in the northern Adriatic Sea, which is regularly used to support ocean color validation activities. Sequences of downwelling irradiance and upwelling radiance profiles were collected at varying distances from the tower to evaluate the shading effects during clear-sky conditions as a function of the deployment distance. The experimental data, as well as Monte Carlo simulations, indicate that the shading effect is negligible for both downwelling irradiances and upwelling radiances at deployment distances greater than 15 and 20 m, respectively. At closer distances, for example, at the 7.5-m deployment distance regularly used at the AAOT for the collection of underwater optical measurements, the shading effect is remarkable: both field and simulated data at a depth of 7 m and a wavelength of 443 nm show that, with a relatively low sun zenith angle of 22°, the shading effect is within 3% for downwelling irradiance and within 8% for upwelling radiance. Monte Carlo simulations at 443, 555, and 665 nm, computed at a depth of 0? m and with values of seawater inherent optical properties representative of the AAOT site, are used to extend considerations on shading effects to measurements taken during different illumination conditions at the 7.5-m deployment distance. Simulations for ideal clear-sky conditions (i.e., in the absence of atmospheric aerosols) show that errors induced by AAOT perturbations significantly vary as a function of wavelength and sun zenith angle. The highest values are observed at 443 nm where, with the sun zenith angle ranging from 20° to 70°, errors vary from 2.4% to approximately 6.2% for downwelling irradiance and from a minimum of 3.0% (occurring at 30°) to almost 6.6% for upwelling radiance. Simulations also show that the shading error can be as high as approximately 20% for both irradiance and radiance measurements taken during overcast sky conditions.
    • Download: (188.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Offshore Tower Shading Effects on In-Water Optical Measurements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4152112
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorZibordi, Giuseppe
    contributor authorDoyle, John Piero
    contributor authorHooker, Stanford B.
    date accessioned2017-06-09T14:16:51Z
    date available2017-06-09T14:16:51Z
    date copyright1999/11/01
    date issued1999
    identifier issn0739-0572
    identifier otherams-1634.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4152112
    description abstractA field campaign was performed to estimate the shading effect induced on in-water irradiance and radiance measurements taken in the immediate vicinity of the Acqua Alta Oceanographic Tower (AAOT), located in the northern Adriatic Sea, which is regularly used to support ocean color validation activities. Sequences of downwelling irradiance and upwelling radiance profiles were collected at varying distances from the tower to evaluate the shading effects during clear-sky conditions as a function of the deployment distance. The experimental data, as well as Monte Carlo simulations, indicate that the shading effect is negligible for both downwelling irradiances and upwelling radiances at deployment distances greater than 15 and 20 m, respectively. At closer distances, for example, at the 7.5-m deployment distance regularly used at the AAOT for the collection of underwater optical measurements, the shading effect is remarkable: both field and simulated data at a depth of 7 m and a wavelength of 443 nm show that, with a relatively low sun zenith angle of 22°, the shading effect is within 3% for downwelling irradiance and within 8% for upwelling radiance. Monte Carlo simulations at 443, 555, and 665 nm, computed at a depth of 0? m and with values of seawater inherent optical properties representative of the AAOT site, are used to extend considerations on shading effects to measurements taken during different illumination conditions at the 7.5-m deployment distance. Simulations for ideal clear-sky conditions (i.e., in the absence of atmospheric aerosols) show that errors induced by AAOT perturbations significantly vary as a function of wavelength and sun zenith angle. The highest values are observed at 443 nm where, with the sun zenith angle ranging from 20° to 70°, errors vary from 2.4% to approximately 6.2% for downwelling irradiance and from a minimum of 3.0% (occurring at 30°) to almost 6.6% for upwelling radiance. Simulations also show that the shading error can be as high as approximately 20% for both irradiance and radiance measurements taken during overcast sky conditions.
    publisherAmerican Meteorological Society
    titleOffshore Tower Shading Effects on In-Water Optical Measurements
    typeJournal Paper
    journal volume16
    journal issue11
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1999)016<1767:OTSEOI>2.0.CO;2
    journal fristpage1767
    journal lastpage1779
    treeJournal of Atmospheric and Oceanic Technology:;1999:;volume( 016 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian