YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Modeling of Precipitation and Cloud Shadow Effects on Mountain-Induced Cumuli

    Source: Journal of the Atmospheric Sciences:;1969:;Volume( 026 ):;issue: 006::page 1283
    Author:
    Liu, J. Y.
    ,
    Orville, H. D.
    DOI: 10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The effects of precipitation on a model of cumulus cloud initiation and development over mountains are studied by numerically integrating the equations of motion, equations of conservation of water substance, and the thermodynamic energy equation. The model is two-space dimensional with a vertical wind shear in a stable, incompressible atmosphere. Heating and evaporation at the valley and mountain interact with the initial ambient flow to initiate clouds which produce shadows on the surface and cut down both heating and evaporation. The model is restricted vertically to 3.5 km and horizontally to 7.0 km. Several precipitation parameters are studied in this model. One, the critical water content determines when cloud water converts to rainwater. A second, the autoconversion rate, determines how rapidly the cloud water converts to rainwater. The third parameter determines how quickly the precipitation evaporates beneath the cloud. The rainwater first forms by autoconversion and is then increased by the accretion process following techniques described by Kessler and Srivastava. Berry's formulation for autoconversion is also tested. The development of the cumulus clouds is similar for both precipitating and nonprecipitating clouds at their early stages. Virga phenomena are illustrated in these small cumulus clouds. At later stages the evaporation beneath and to the sides of the cloud makes the air cooler and creates a downdraft. Generally such effects shorten the clouds' life cycle. The shadow effects cause the clouds to move out of the model grid at a progressively faster rate and cause the clouds subsequent to the first one to be smaller. In a symmetric model integrated both with and without precipitation and with cloud shadow effects, the shadow causes multiple growths over the ridge, the third of three clouds being the only one to accelerate until impeded by the rigid upper boundary of the grid. The first two clouds dissipate shortly after formation. The downdrafts beneath the clouds are stronger in the precipitating case.
    • Download: (1010.Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Modeling of Precipitation and Cloud Shadow Effects on Mountain-Induced Cumuli

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4151417
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorLiu, J. Y.
    contributor authorOrville, H. D.
    date accessioned2017-06-09T14:15:10Z
    date available2017-06-09T14:15:10Z
    date copyright1969/11/01
    date issued1969
    identifier issn0022-4928
    identifier otherams-15714.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4151417
    description abstractThe effects of precipitation on a model of cumulus cloud initiation and development over mountains are studied by numerically integrating the equations of motion, equations of conservation of water substance, and the thermodynamic energy equation. The model is two-space dimensional with a vertical wind shear in a stable, incompressible atmosphere. Heating and evaporation at the valley and mountain interact with the initial ambient flow to initiate clouds which produce shadows on the surface and cut down both heating and evaporation. The model is restricted vertically to 3.5 km and horizontally to 7.0 km. Several precipitation parameters are studied in this model. One, the critical water content determines when cloud water converts to rainwater. A second, the autoconversion rate, determines how rapidly the cloud water converts to rainwater. The third parameter determines how quickly the precipitation evaporates beneath the cloud. The rainwater first forms by autoconversion and is then increased by the accretion process following techniques described by Kessler and Srivastava. Berry's formulation for autoconversion is also tested. The development of the cumulus clouds is similar for both precipitating and nonprecipitating clouds at their early stages. Virga phenomena are illustrated in these small cumulus clouds. At later stages the evaporation beneath and to the sides of the cloud makes the air cooler and creates a downdraft. Generally such effects shorten the clouds' life cycle. The shadow effects cause the clouds to move out of the model grid at a progressively faster rate and cause the clouds subsequent to the first one to be smaller. In a symmetric model integrated both with and without precipitation and with cloud shadow effects, the shadow causes multiple growths over the ridge, the third of three clouds being the only one to accelerate until impeded by the rigid upper boundary of the grid. The first two clouds dissipate shortly after formation. The downdrafts beneath the clouds are stronger in the precipitating case.
    publisherAmerican Meteorological Society
    titleNumerical Modeling of Precipitation and Cloud Shadow Effects on Mountain-Induced Cumuli
    typeJournal Paper
    journal volume26
    journal issue6
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2
    journal fristpage1283
    journal lastpage1298
    treeJournal of the Atmospheric Sciences:;1969:;Volume( 026 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian