YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Absorption of Radar Signals by the Atmosphere of Venus

    Source: Journal of the Atmospheric Sciences:;1968:;Volume( 025 ):;issue: 004::page 555
    Author:
    Evans, J. V.
    ,
    Ingalls, R. P.
    DOI: 10.1175/1520-0469(1968)025<0555:AORSBT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Attempts to study the radiowave reflection properties of Venus by radar at 3.8 cm wavelength are reviewed. Measurements made by the Lincoln Laboratory during the last three inferior conjunctions place the scattering cross section at 1.7% of the projected area of the planetary disk. At 12.5 cm wavelength, a cross section of 11.5% has been reported and at wavelengths of 23 cm or longer the cross section appears to be ≥15%. No comparable wavelength dependence is found in the radar cross sections of the moon, Mercury or Mars, and it is believed that in the case of Venus, absorption of the waves by the atmosphere is responsible for the low cross section observed at the shortest wavelength. Support for this conclusion has been obtained by comparing the scattering behavior observed at 3.8 and 12.5 cm. For Venus the reflectivity of the limbs compared to that of the disk center is lower at 3.8 cm than at 12.5 cm wavelength, while in the case of the moon the reverse is true. If the additional limb darkening is attributed to the attenuation of the rays that pass through the atmosphere obliquely, the difference in the two-way absorption can be established as 5±1 db. The radar cross section observed at 3.8 cm is lower than that at 12.5 cm by 8±3 db. Thus, it appears that the one-way absorption of 3.8 cm microwaves by the atmosphere of Venus is at least 2.5 db and possibly more. This is significantly greater than can be accounted for by an atmosphere consisting of CO2 with a pressure of 19±2 atm as implied by the recent Soviet probe. Either the pressure is considerably greater than this, or other gases that are more effective microwave absorbers are present.
    • Download: (395.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Absorption of Radar Signals by the Atmosphere of Venus

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4151130
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorEvans, J. V.
    contributor authorIngalls, R. P.
    date accessioned2017-06-09T14:14:29Z
    date available2017-06-09T14:14:29Z
    date copyright1968/07/01
    date issued1968
    identifier issn0022-4928
    identifier otherams-15456.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4151130
    description abstractAttempts to study the radiowave reflection properties of Venus by radar at 3.8 cm wavelength are reviewed. Measurements made by the Lincoln Laboratory during the last three inferior conjunctions place the scattering cross section at 1.7% of the projected area of the planetary disk. At 12.5 cm wavelength, a cross section of 11.5% has been reported and at wavelengths of 23 cm or longer the cross section appears to be ≥15%. No comparable wavelength dependence is found in the radar cross sections of the moon, Mercury or Mars, and it is believed that in the case of Venus, absorption of the waves by the atmosphere is responsible for the low cross section observed at the shortest wavelength. Support for this conclusion has been obtained by comparing the scattering behavior observed at 3.8 and 12.5 cm. For Venus the reflectivity of the limbs compared to that of the disk center is lower at 3.8 cm than at 12.5 cm wavelength, while in the case of the moon the reverse is true. If the additional limb darkening is attributed to the attenuation of the rays that pass through the atmosphere obliquely, the difference in the two-way absorption can be established as 5±1 db. The radar cross section observed at 3.8 cm is lower than that at 12.5 cm by 8±3 db. Thus, it appears that the one-way absorption of 3.8 cm microwaves by the atmosphere of Venus is at least 2.5 db and possibly more. This is significantly greater than can be accounted for by an atmosphere consisting of CO2 with a pressure of 19±2 atm as implied by the recent Soviet probe. Either the pressure is considerably greater than this, or other gases that are more effective microwave absorbers are present.
    publisherAmerican Meteorological Society
    titleAbsorption of Radar Signals by the Atmosphere of Venus
    typeJournal Paper
    journal volume25
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/1520-0469(1968)025<0555:AORSBT>2.0.CO;2
    journal fristpage555
    journal lastpage559
    treeJournal of the Atmospheric Sciences:;1968:;Volume( 025 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian