YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    AN APPROXIMATION TO THE PRODUCT OF DISCRETE FUNCTIONS

    Source: Journal of Meteorology:;1961:;volume( 018 ):;issue: 001::page 31
    Author:
    Platzman, George W.
    DOI: 10.1175/1520-0469(1961)018<0031:AATTPO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: If one regards a discrete function as a vector, the ?best? approximation to the product of two discrete functions (defined for the same set of values of the argument) is not necessarily the ordinary scalar product. The ?best? approximation is shown to be an approximation-in-the-mean to the product of the trigonometric interpolation polynomials (cardinal functions) which correspond to the given discrete functions. This approximation arises naturally when the product is taken in the spectral domain. However, it can be approached by the ordinary scalar product provided the input functions are smoothed. The smoothing operator is linear and easily computed; it results in the suppression of all harmonics of wave length less than four times the mesh length.
    • Download: (483.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      AN APPROXIMATION TO THE PRODUCT OF DISCRETE FUNCTIONS

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4150279
    Collections
    • Journal of Meteorology

    Show full item record

    contributor authorPlatzman, George W.
    date accessioned2017-06-09T14:12:30Z
    date available2017-06-09T14:12:30Z
    date copyright1961/02/01
    date issued1961
    identifier issn0095-9634
    identifier otherams-14690.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4150279
    description abstractIf one regards a discrete function as a vector, the ?best? approximation to the product of two discrete functions (defined for the same set of values of the argument) is not necessarily the ordinary scalar product. The ?best? approximation is shown to be an approximation-in-the-mean to the product of the trigonometric interpolation polynomials (cardinal functions) which correspond to the given discrete functions. This approximation arises naturally when the product is taken in the spectral domain. However, it can be approached by the ordinary scalar product provided the input functions are smoothed. The smoothing operator is linear and easily computed; it results in the suppression of all harmonics of wave length less than four times the mesh length.
    publisherAmerican Meteorological Society
    titleAN APPROXIMATION TO THE PRODUCT OF DISCRETE FUNCTIONS
    typeJournal Paper
    journal volume18
    journal issue1
    journal titleJournal of Meteorology
    identifier doi10.1175/1520-0469(1961)018<0031:AATTPO>2.0.CO;2
    journal fristpage31
    journal lastpage37
    treeJournal of Meteorology:;1961:;volume( 018 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian