YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Retrieval of Three-Dimensional Particle Velocity from Airborne Doppler Radar Data

    Source: Journal of Atmospheric and Oceanic Technology:;1998:;volume( 015 ):;issue: 004::page 860
    Author:
    Leon, D.
    ,
    Vali, G.
    DOI: 10.1175/1520-0426(1998)015<0860:ROTDPV>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A technique has been developed for the retrieval of three-dimensional particle velocities from Doppler data obtained with an airborne radar. The 95-GHz radar was mounted on the University of Wyoming KingAir aircraft. The retrieval technique is derived from the velocity azimuth display (VAD) analysis and is termed the airborne velocity azimuth display (AVAD). Data for this analysis are taken when the radar beam is scanned by the turning of the aircraft. As in VAD analysis, a functional form for the horizontal variation of the velocity of the scatterers must be assumed. The components of the velocity field are then determined using a least squares fit to the Doppler velocities. The AVAD technique differs from VAD analysis because of the mobility of the platform and its proximity to regions of interest, and it is due to geometric considerations dictated by the turning of the aircraft. The analysis region is only a few kilometers in diameter?considerably smaller than for a ground-based VAD analysis. This reduces the required area of cloud coverage and the importance of horizontal variations in the wind field. However, the reduced analysis area also limits the accuracy with which higher-order characteristics of the wind field, such as divergence, can be resolved. This paper presents the AVAD technique and describes the data processing required. Results from multiple AVAD analyses from flights on two days are presented and are shown to be in generally good agreement with winds measured by sensors on board the KingAir.
    • Download: (188.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Retrieval of Three-Dimensional Particle Velocity from Airborne Doppler Radar Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4149757
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLeon, D.
    contributor authorVali, G.
    date accessioned2017-06-09T14:11:20Z
    date available2017-06-09T14:11:20Z
    date copyright1998/08/01
    date issued1998
    identifier issn0739-0572
    identifier otherams-1422.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4149757
    description abstractA technique has been developed for the retrieval of three-dimensional particle velocities from Doppler data obtained with an airborne radar. The 95-GHz radar was mounted on the University of Wyoming KingAir aircraft. The retrieval technique is derived from the velocity azimuth display (VAD) analysis and is termed the airborne velocity azimuth display (AVAD). Data for this analysis are taken when the radar beam is scanned by the turning of the aircraft. As in VAD analysis, a functional form for the horizontal variation of the velocity of the scatterers must be assumed. The components of the velocity field are then determined using a least squares fit to the Doppler velocities. The AVAD technique differs from VAD analysis because of the mobility of the platform and its proximity to regions of interest, and it is due to geometric considerations dictated by the turning of the aircraft. The analysis region is only a few kilometers in diameter?considerably smaller than for a ground-based VAD analysis. This reduces the required area of cloud coverage and the importance of horizontal variations in the wind field. However, the reduced analysis area also limits the accuracy with which higher-order characteristics of the wind field, such as divergence, can be resolved. This paper presents the AVAD technique and describes the data processing required. Results from multiple AVAD analyses from flights on two days are presented and are shown to be in generally good agreement with winds measured by sensors on board the KingAir.
    publisherAmerican Meteorological Society
    titleRetrieval of Three-Dimensional Particle Velocity from Airborne Doppler Radar Data
    typeJournal Paper
    journal volume15
    journal issue4
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1998)015<0860:ROTDPV>2.0.CO;2
    journal fristpage860
    journal lastpage870
    treeJournal of Atmospheric and Oceanic Technology:;1998:;volume( 015 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian