Accuracy of NWS 8" Standard Nonrecording Precipitation Gauge: Results and Application of WMO IntercomparisonSource: Journal of Atmospheric and Oceanic Technology:;1998:;volume( 015 ):;issue: 001::page 54Author:Yang, Daqing
,
Goodison, Barry E.
,
Metcalfe, John R.
,
Golubev, Valentin S.
,
Bates, Roy
,
Pangburn, Timothy
,
Hanson, Clayton L.
DOI: 10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2Publisher: American Meteorological Society
Abstract: The standard 8" nonrecording precipitation gauge has been used historically by the National Weather Service (NWS) as the official precipitation measurement instrument of the U.S. climate station network. From 1986 to 1992, the accuracy and performance of this gauge (unshielded or with an Alter shield) were evaluated during the WMO Solid Precipitation Measurement Intercomparison at three stations in the United States and Russia, representing a variety of climate, terrain, and exposure. The double-fence intercomparison reference (DFIR) was the reference standard used at all the intercomparison stations in the Intercomparison project. The Intercomparison data collected at different sites are compatible with respect to the catch ratio (gauge measured/DFIR) for the same gauges, when compared using wind speed at the height of gauge orifice during the observation period. The effects of environmental factors, such as wind speed and temperature, on the gauge catch were investigated. Wind speed was found to be the most important factor determining gauge catch when precipitation was classified into snow, mixed, and rain. The regression functions of the catch ratio versus wind speed at the gauge height on a daily time step were derived for various types of precipitation. Independent checks of the equations have been conducted at these intercomparison stations and good agreement was obtained. Application of the correction procedures for wind, wetting loss, and trace amounts was made on a daily basis at Barrow, Alaska, for 1982 and 1983, and, on average, the gauge-measured precipitation was increased by 20% for rain and 90% for snow.
|
Collections
Show full item record
contributor author | Yang, Daqing | |
contributor author | Goodison, Barry E. | |
contributor author | Metcalfe, John R. | |
contributor author | Golubev, Valentin S. | |
contributor author | Bates, Roy | |
contributor author | Pangburn, Timothy | |
contributor author | Hanson, Clayton L. | |
date accessioned | 2017-06-09T14:09:43Z | |
date available | 2017-06-09T14:09:43Z | |
date copyright | 1998/02/01 | |
date issued | 1998 | |
identifier issn | 0739-0572 | |
identifier other | ams-1355.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4149012 | |
description abstract | The standard 8" nonrecording precipitation gauge has been used historically by the National Weather Service (NWS) as the official precipitation measurement instrument of the U.S. climate station network. From 1986 to 1992, the accuracy and performance of this gauge (unshielded or with an Alter shield) were evaluated during the WMO Solid Precipitation Measurement Intercomparison at three stations in the United States and Russia, representing a variety of climate, terrain, and exposure. The double-fence intercomparison reference (DFIR) was the reference standard used at all the intercomparison stations in the Intercomparison project. The Intercomparison data collected at different sites are compatible with respect to the catch ratio (gauge measured/DFIR) for the same gauges, when compared using wind speed at the height of gauge orifice during the observation period. The effects of environmental factors, such as wind speed and temperature, on the gauge catch were investigated. Wind speed was found to be the most important factor determining gauge catch when precipitation was classified into snow, mixed, and rain. The regression functions of the catch ratio versus wind speed at the gauge height on a daily time step were derived for various types of precipitation. Independent checks of the equations have been conducted at these intercomparison stations and good agreement was obtained. Application of the correction procedures for wind, wetting loss, and trace amounts was made on a daily basis at Barrow, Alaska, for 1982 and 1983, and, on average, the gauge-measured precipitation was increased by 20% for rain and 90% for snow. | |
publisher | American Meteorological Society | |
title | Accuracy of NWS 8" Standard Nonrecording Precipitation Gauge: Results and Application of WMO Intercomparison | |
type | Journal Paper | |
journal volume | 15 | |
journal issue | 1 | |
journal title | Journal of Atmospheric and Oceanic Technology | |
identifier doi | 10.1175/1520-0426(1998)015<0054:AONSNP>2.0.CO;2 | |
journal fristpage | 54 | |
journal lastpage | 68 | |
tree | Journal of Atmospheric and Oceanic Technology:;1998:;volume( 015 ):;issue: 001 | |
contenttype | Fulltext |