YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Method for Automated Dynamic Calibration of Tipping-Bucket Rain Gauges

    Source: Journal of Atmospheric and Oceanic Technology:;1997:;volume( 014 ):;issue: 006::page 1513
    Author:
    Humphrey, M. D.
    ,
    Istok, J. D.
    ,
    Lee, J. Y.
    ,
    Hevesi, J. A.
    ,
    Flint, A. L.
    DOI: 10.1175/1520-0426(1997)014<1513:ANMFAD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Existing methods for dynamic calibration of tipping-bucket rain gauges (TBRs) can be time consuming and labor intensive. A new automated dynamic calibration system has been developed to calibrate TBRs with minimal effort. The system consists of a programmable pump, datalogger, digital balance, and computer. Calibration is performed in two steps: 1) pump calibration and 2) rain gauge calibration. Pump calibration ensures precise control of water flow rates delivered to the rain gauge funnel; rain gauge calibration ensures precise conversion of bucket tip times to actual rainfall rates. Calibration of the pump and one rain gauge for 10 selected pump rates typically requires about 8 h. Data files generated during rain gauge calibration are used to compute rainfall intensities and amounts from a record of bucket tip times collected in the field. The system was tested using 5 types of commercial TBRs (15.2-, 20.3-, and 30.5-cm diameters; 0.1-, 0.2-, and 1.0-mm resolutions) and using 14 TBRs of a single type (20.3-cm diameter; 0.1-mm resolution). Ten pump rates ranging from 3 to 154 mL min?1 were used to calibrate the TBRs and represented rainfall rates between 6 and 254 mm h?1 depending on the rain gauge diameter. All pump calibration results were very linear with R2 values greater than 0.99. All rain gauges exhibited large nonlinear underestimation errors (between 5% and 29%) that decreased with increasing rain gauge resolution and increased with increasing rainfall rate, especially for rates greater than 50 mm h?1. Calibration curves of bucket tip time against the reciprocal of the true pump rate for all rain gauges also were linear with R2 values of 0.99. Calibration data for the 14 rain gauges of the same type were very similar, as indicated by slope values that were within 14% of each other and ranged from about 367 to 417 s mm h?1. The developed system can calibrate TBRs efficiently, accurately, and virtually unattended and could be modified for use with other rain gauge designs. The system is now in routine use to calibrate TBRs in a large rainfall collection network at Yucca Mountain, Nevada.
    • Download: (120.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Method for Automated Dynamic Calibration of Tipping-Bucket Rain Gauges

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148923
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorHumphrey, M. D.
    contributor authorIstok, J. D.
    contributor authorLee, J. Y.
    contributor authorHevesi, J. A.
    contributor authorFlint, A. L.
    date accessioned2017-06-09T14:09:27Z
    date available2017-06-09T14:09:27Z
    date copyright1997/12/01
    date issued1997
    identifier issn0739-0572
    identifier otherams-1347.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148923
    description abstractExisting methods for dynamic calibration of tipping-bucket rain gauges (TBRs) can be time consuming and labor intensive. A new automated dynamic calibration system has been developed to calibrate TBRs with minimal effort. The system consists of a programmable pump, datalogger, digital balance, and computer. Calibration is performed in two steps: 1) pump calibration and 2) rain gauge calibration. Pump calibration ensures precise control of water flow rates delivered to the rain gauge funnel; rain gauge calibration ensures precise conversion of bucket tip times to actual rainfall rates. Calibration of the pump and one rain gauge for 10 selected pump rates typically requires about 8 h. Data files generated during rain gauge calibration are used to compute rainfall intensities and amounts from a record of bucket tip times collected in the field. The system was tested using 5 types of commercial TBRs (15.2-, 20.3-, and 30.5-cm diameters; 0.1-, 0.2-, and 1.0-mm resolutions) and using 14 TBRs of a single type (20.3-cm diameter; 0.1-mm resolution). Ten pump rates ranging from 3 to 154 mL min?1 were used to calibrate the TBRs and represented rainfall rates between 6 and 254 mm h?1 depending on the rain gauge diameter. All pump calibration results were very linear with R2 values greater than 0.99. All rain gauges exhibited large nonlinear underestimation errors (between 5% and 29%) that decreased with increasing rain gauge resolution and increased with increasing rainfall rate, especially for rates greater than 50 mm h?1. Calibration curves of bucket tip time against the reciprocal of the true pump rate for all rain gauges also were linear with R2 values of 0.99. Calibration data for the 14 rain gauges of the same type were very similar, as indicated by slope values that were within 14% of each other and ranged from about 367 to 417 s mm h?1. The developed system can calibrate TBRs efficiently, accurately, and virtually unattended and could be modified for use with other rain gauge designs. The system is now in routine use to calibrate TBRs in a large rainfall collection network at Yucca Mountain, Nevada.
    publisherAmerican Meteorological Society
    titleA New Method for Automated Dynamic Calibration of Tipping-Bucket Rain Gauges
    typeJournal Paper
    journal volume14
    journal issue6
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1997)014<1513:ANMFAD>2.0.CO;2
    journal fristpage1513
    journal lastpage1519
    treeJournal of Atmospheric and Oceanic Technology:;1997:;volume( 014 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian