YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbulent Mixing in Stably Stratified Shear Flows

    Source: Journal of Applied Meteorology:;1995:;volume( 034 ):;issue: 001::page 33
    Author:
    Schumann, U.
    ,
    Gerz, T.
    DOI: 10.1175/1520-0450-34.1.33
    Publisher: American Meteorological Society
    Abstract: Vertical mixing of momentum and heat is investigated in turbulent stratified shear flows. It is assumed that the flow has uniform shear and stratification with homogeneous turbulence and that an equilibrium is reached between kinetic and potential energy without gravity wave oscillations. A simple model is derived to estimate vertical diffusivities for Richardson numbers in between 0 and about 1. The model is based on the budgets of kinetic and potential energy and assumes a linear relationship between dissipation, shear, and vertical velocity variance for closure. Scalar fluctuations are related to shear or buoyancy frequency depending on the Richardson number. The turbulent Prandtl number and the growth rate of kinetic energy are specified as functions of this number. Model coefficients are determined mainly from laboratory measurements. Data from large-eddy simulations are used to determine the "stationary" Richardson number with balanced shear production, dissipation, and buoyancy terms. The results of the model are compared with data from laboratory experiments in air or saltwater, with measurements in the atmospheric boundary layer and in the stable troposphere, and with results from the numerical simulations. The model interpolates the observations within the scatter of the data. Theanalysis shows intrinsic relationships between several mixing parameters.
    • Download: (1.251Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbulent Mixing in Stably Stratified Shear Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148904
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorSchumann, U.
    contributor authorGerz, T.
    date accessioned2017-06-09T14:09:24Z
    date available2017-06-09T14:09:24Z
    date copyright1995/01/01
    date issued1995
    identifier issn0894-8763
    identifier otherams-13452.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148904
    description abstractVertical mixing of momentum and heat is investigated in turbulent stratified shear flows. It is assumed that the flow has uniform shear and stratification with homogeneous turbulence and that an equilibrium is reached between kinetic and potential energy without gravity wave oscillations. A simple model is derived to estimate vertical diffusivities for Richardson numbers in between 0 and about 1. The model is based on the budgets of kinetic and potential energy and assumes a linear relationship between dissipation, shear, and vertical velocity variance for closure. Scalar fluctuations are related to shear or buoyancy frequency depending on the Richardson number. The turbulent Prandtl number and the growth rate of kinetic energy are specified as functions of this number. Model coefficients are determined mainly from laboratory measurements. Data from large-eddy simulations are used to determine the "stationary" Richardson number with balanced shear production, dissipation, and buoyancy terms. The results of the model are compared with data from laboratory experiments in air or saltwater, with measurements in the atmospheric boundary layer and in the stable troposphere, and with results from the numerical simulations. The model interpolates the observations within the scatter of the data. Theanalysis shows intrinsic relationships between several mixing parameters.
    publisherAmerican Meteorological Society
    titleTurbulent Mixing in Stably Stratified Shear Flows
    typeJournal Paper
    journal volume34
    journal issue1
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450-34.1.33
    journal fristpage33
    journal lastpage48
    treeJournal of Applied Meteorology:;1995:;volume( 034 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian