YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    AIRS Subpixel Cloud Characterization Using MODIS Cloud Products

    Source: Journal of Applied Meteorology:;2004:;volume( 043 ):;issue: 008::page 1083
    Author:
    Li, Jun
    ,
    Menzel, W. Paul
    ,
    Sun, Fengying
    ,
    Schmit, Timothy J.
    ,
    Gurka, James
    DOI: 10.1175/1520-0450(2004)043<1083:ASCCUM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (?1?5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (?13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS?AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
    • Download: (736.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      AIRS Subpixel Cloud Characterization Using MODIS Cloud Products

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148836
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorLi, Jun
    contributor authorMenzel, W. Paul
    contributor authorSun, Fengying
    contributor authorSchmit, Timothy J.
    contributor authorGurka, James
    date accessioned2017-06-09T14:09:13Z
    date available2017-06-09T14:09:13Z
    date copyright2004/08/01
    date issued2004
    identifier issn0894-8763
    identifier otherams-13391.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148836
    description abstractThe Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (?1?5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (?13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS?AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
    publisherAmerican Meteorological Society
    titleAIRS Subpixel Cloud Characterization Using MODIS Cloud Products
    typeJournal Paper
    journal volume43
    journal issue8
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(2004)043<1083:ASCCUM>2.0.CO;2
    journal fristpage1083
    journal lastpage1094
    treeJournal of Applied Meteorology:;2004:;volume( 043 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian