YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parametric Rainfall Retrieval Algorithms for Passive Microwave Radiometers

    Source: Journal of Applied Meteorology:;2003:;volume( 042 ):;issue: 010::page 1480
    Author:
    Shin, Dong-Bin
    ,
    Kummerow, Christian
    DOI: 10.1175/1520-0450(2003)042<1480:PRRAFP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A methodology is described to construct fully parametric rainfall retrieval algorithms for a variety of passive microwave sensors that exist today and are planned for the future. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is used to retrieve nonraining geophysical parameters. The method then blends these background geophysical parameters with three-dimensional precipitation fields obtained by matching the TRMM precipitation radar (PR) reflectivity profiles with cloud-resolving model simulations to produce a consistent three-dimensional atmospheric description. Based upon this common description, radiative transfer simulations corresponding to specific microwave sensors are then employed to compute radiances from clear and rainy scenes, as might be seen by any specified microwave radiometer. Last, a Bayesian retrieval methodology is used in conjunction with this database to derive the most likely surface rainfall as well as its vertical structure. By avoiding any dependencies on specific channels or channel combinations, the technique can readily be adapted to different sensor configurations. The algorithm performance is tested for a variety of sensor designs using synthetic retrievals to demonstrate its capability for consistent rainfall estimates. Whereas actual retrievals would be sensitive to the details of the a priori database construction, results from this study indicate that even modest radiometers can retrieve unbiased rainfall rates when constrained by an a priori database constructed from the TRMM satellite. Random errors are correlated to unobserved variations in the vertical and horizontal structure of the precipitation and, thus, depend upon sensor design specifications. The fidelity of these synthetic retrievals is briefly examined by comparing the simulated brightness temperature (Tb) generated in this study with direct observations by the TRMM TMI. Good physical consistency between the simulated and TRMM observed Tbs is found in precipitating regions for frequencies at which emission processes dominate the radiometric signal. The consistency is poor for higher-frequency microwave channels for which ice scattering is important. Greater consistency between the computed and observed Tbs should be sought before replacing current operational algorithms with the parametric equivalent.
    • Download: (866.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parametric Rainfall Retrieval Algorithms for Passive Microwave Radiometers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148733
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorShin, Dong-Bin
    contributor authorKummerow, Christian
    date accessioned2017-06-09T14:08:56Z
    date available2017-06-09T14:08:56Z
    date copyright2003/10/01
    date issued2003
    identifier issn0894-8763
    identifier otherams-13299.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148733
    description abstractA methodology is described to construct fully parametric rainfall retrieval algorithms for a variety of passive microwave sensors that exist today and are planned for the future. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is used to retrieve nonraining geophysical parameters. The method then blends these background geophysical parameters with three-dimensional precipitation fields obtained by matching the TRMM precipitation radar (PR) reflectivity profiles with cloud-resolving model simulations to produce a consistent three-dimensional atmospheric description. Based upon this common description, radiative transfer simulations corresponding to specific microwave sensors are then employed to compute radiances from clear and rainy scenes, as might be seen by any specified microwave radiometer. Last, a Bayesian retrieval methodology is used in conjunction with this database to derive the most likely surface rainfall as well as its vertical structure. By avoiding any dependencies on specific channels or channel combinations, the technique can readily be adapted to different sensor configurations. The algorithm performance is tested for a variety of sensor designs using synthetic retrievals to demonstrate its capability for consistent rainfall estimates. Whereas actual retrievals would be sensitive to the details of the a priori database construction, results from this study indicate that even modest radiometers can retrieve unbiased rainfall rates when constrained by an a priori database constructed from the TRMM satellite. Random errors are correlated to unobserved variations in the vertical and horizontal structure of the precipitation and, thus, depend upon sensor design specifications. The fidelity of these synthetic retrievals is briefly examined by comparing the simulated brightness temperature (Tb) generated in this study with direct observations by the TRMM TMI. Good physical consistency between the simulated and TRMM observed Tbs is found in precipitating regions for frequencies at which emission processes dominate the radiometric signal. The consistency is poor for higher-frequency microwave channels for which ice scattering is important. Greater consistency between the computed and observed Tbs should be sought before replacing current operational algorithms with the parametric equivalent.
    publisherAmerican Meteorological Society
    titleParametric Rainfall Retrieval Algorithms for Passive Microwave Radiometers
    typeJournal Paper
    journal volume42
    journal issue10
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(2003)042<1480:PRRAFP>2.0.CO;2
    journal fristpage1480
    journal lastpage1496
    treeJournal of Applied Meteorology:;2003:;volume( 042 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian