YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mesoscale Convective System Rainfall in the Sahel

    Source: Journal of Applied Meteorology:;2002:;volume( 041 ):;issue: 011::page 1081
    Author:
    Mathon, Vincent
    ,
    Laurent, Henri
    ,
    Lebel, Thierry
    DOI: 10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Based on a full-resolution Meteosat dataset, an extensive climatological study of the mesoscale convective systems (MCSs) observed by satellite over the Sahel leads to the definition of a subpopulation of MCSs?called organized convective systems (OCSs)?that represents only 12% of the total number of MCSs observed during 9 yr over the central Sahel while accounting for almost 80% of the total convective cloud cover defined at the 233-K threshold. Using a high-resolution rainfall dataset, it is shown that these OCSs are also the main source of rain in this region, accounting for about 90% of the seasonal rainfall, with a mean areal rainfall of 14.7 mm per system. All of the OCSs are associated with a rain event, and more than 90% of the major rain events are associated with an OCS. These figures are compared with those obtained for mesoscale convective complexes (MCCs). Each MCC produces more rainfall on average (19 mm per system) but there are only a few of them (1.2% of the total number of MCSs), and they consequently produce only 19% of the seasonal rainfall. The interannual rainfall variability is first determined by the year-to-year fluctuation of the number of events defined from satellite rather than by the fluctuations of their mean rain efficiency. In fact, the total rain yield of an OCS appears to be linked primarily to its duration (which itself is largely determined by its spatial extension) rather than to its average rain rate. The diurnal cycle over the region is also studied, and it is shown that it is largely conditioned by the propagative nature of the OCSs associated with orography-driven generations located a few hundred kilometers to the east of the validation area.
    • Download: (417.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mesoscale Convective System Rainfall in the Sahel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148609
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorMathon, Vincent
    contributor authorLaurent, Henri
    contributor authorLebel, Thierry
    date accessioned2017-06-09T14:08:34Z
    date available2017-06-09T14:08:34Z
    date copyright2002/11/01
    date issued2002
    identifier issn0894-8763
    identifier otherams-13187.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148609
    description abstractBased on a full-resolution Meteosat dataset, an extensive climatological study of the mesoscale convective systems (MCSs) observed by satellite over the Sahel leads to the definition of a subpopulation of MCSs?called organized convective systems (OCSs)?that represents only 12% of the total number of MCSs observed during 9 yr over the central Sahel while accounting for almost 80% of the total convective cloud cover defined at the 233-K threshold. Using a high-resolution rainfall dataset, it is shown that these OCSs are also the main source of rain in this region, accounting for about 90% of the seasonal rainfall, with a mean areal rainfall of 14.7 mm per system. All of the OCSs are associated with a rain event, and more than 90% of the major rain events are associated with an OCS. These figures are compared with those obtained for mesoscale convective complexes (MCCs). Each MCC produces more rainfall on average (19 mm per system) but there are only a few of them (1.2% of the total number of MCSs), and they consequently produce only 19% of the seasonal rainfall. The interannual rainfall variability is first determined by the year-to-year fluctuation of the number of events defined from satellite rather than by the fluctuations of their mean rain efficiency. In fact, the total rain yield of an OCS appears to be linked primarily to its duration (which itself is largely determined by its spatial extension) rather than to its average rain rate. The diurnal cycle over the region is also studied, and it is shown that it is largely conditioned by the propagative nature of the OCSs associated with orography-driven generations located a few hundred kilometers to the east of the validation area.
    publisherAmerican Meteorological Society
    titleMesoscale Convective System Rainfall in the Sahel
    typeJournal Paper
    journal volume41
    journal issue11
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2
    journal fristpage1081
    journal lastpage1092
    treeJournal of Applied Meteorology:;2002:;volume( 041 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian