Evaluating the Quality of Ground-Based Microwave Radiometer Measurements and Retrievals Using Detrended Fluctuation and Spectral Analysis MethodsSource: Journal of Applied Meteorology:;2002:;volume( 041 ):;issue: 001::page 56Author:Ivanova, K.
,
Clothiaux, E. E.
,
Shirer, H. N.
,
Ackerman, T. P.
,
Liljegren, J. C.
,
Ausloos, M.
DOI: 10.1175/1520-0450(2002)041<0056:ETQOGB>2.0.CO;2Publisher: American Meteorological Society
Abstract: Time series both of microwave radiometer brightness temperature measurements at 23.8 and 31.4 GHz and of retrievals of water vapor and liquid water path from these brightness temperatures are evaluated using the detrended fluctuation analysis method. As quantified by the parameter α, this method (i) enables identification of the timescales over which noise dominates the time series and (ii) characterizes the temporal range of correlations in the time series. The more common spectral analysis method is also used to assess the data, and its results are compared with those from the detrended fluctuation analysis method. The assumption that measurements should have certain scaling properties allows the quality of the measurements to be characterized. The additional assumption that the scaling properties of the measurements of an atmospheric quantity are preserved in a useful retrieval provides a means for evaluating the retrieval itself. Applying these two assumptions to microwave radiometer measurements and retrievals demonstrates three points. First, the retrieved water vapor path during cloudy-sky periods can be dominated by noise on shorter-than-30-min timescales (α exponent = 0.1) and exhibits no scaling behavior at longer timescales. However, correlations in the brightness temperatures and liquid water path retrievals are found to be consistent with a power-law behavior for timescales up to 3 h with an α exponent equal to approximately 0.3, as in other geophysical phenomena. Second, clear-sky, moist atmospheres show the expected scaling for both measurements and retrievals of the water vapor path. Third, during clear-sky, dry atmospheric days, instrument noise from the 31.4-GHz channel compromises the quality of the water vapor path retrieval. The detrended fluctuation analysis method is thus proposed as means for assessing the quality of both the instrument data and the retrieved parameters obtained from these data.
|
Collections
Show full item record
| contributor author | Ivanova, K. | |
| contributor author | Clothiaux, E. E. | |
| contributor author | Shirer, H. N. | |
| contributor author | Ackerman, T. P. | |
| contributor author | Liljegren, J. C. | |
| contributor author | Ausloos, M. | |
| date accessioned | 2017-06-09T14:08:18Z | |
| date available | 2017-06-09T14:08:18Z | |
| date copyright | 2002/01/01 | |
| date issued | 2002 | |
| identifier issn | 0894-8763 | |
| identifier other | ams-13111.pdf | |
| identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4148526 | |
| description abstract | Time series both of microwave radiometer brightness temperature measurements at 23.8 and 31.4 GHz and of retrievals of water vapor and liquid water path from these brightness temperatures are evaluated using the detrended fluctuation analysis method. As quantified by the parameter α, this method (i) enables identification of the timescales over which noise dominates the time series and (ii) characterizes the temporal range of correlations in the time series. The more common spectral analysis method is also used to assess the data, and its results are compared with those from the detrended fluctuation analysis method. The assumption that measurements should have certain scaling properties allows the quality of the measurements to be characterized. The additional assumption that the scaling properties of the measurements of an atmospheric quantity are preserved in a useful retrieval provides a means for evaluating the retrieval itself. Applying these two assumptions to microwave radiometer measurements and retrievals demonstrates three points. First, the retrieved water vapor path during cloudy-sky periods can be dominated by noise on shorter-than-30-min timescales (α exponent = 0.1) and exhibits no scaling behavior at longer timescales. However, correlations in the brightness temperatures and liquid water path retrievals are found to be consistent with a power-law behavior for timescales up to 3 h with an α exponent equal to approximately 0.3, as in other geophysical phenomena. Second, clear-sky, moist atmospheres show the expected scaling for both measurements and retrievals of the water vapor path. Third, during clear-sky, dry atmospheric days, instrument noise from the 31.4-GHz channel compromises the quality of the water vapor path retrieval. The detrended fluctuation analysis method is thus proposed as means for assessing the quality of both the instrument data and the retrieved parameters obtained from these data. | |
| publisher | American Meteorological Society | |
| title | Evaluating the Quality of Ground-Based Microwave Radiometer Measurements and Retrievals Using Detrended Fluctuation and Spectral Analysis Methods | |
| type | Journal Paper | |
| journal volume | 41 | |
| journal issue | 1 | |
| journal title | Journal of Applied Meteorology | |
| identifier doi | 10.1175/1520-0450(2002)041<0056:ETQOGB>2.0.CO;2 | |
| journal fristpage | 56 | |
| journal lastpage | 68 | |
| tree | Journal of Applied Meteorology:;2002:;volume( 041 ):;issue: 001 | |
| contenttype | Fulltext |