YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Approach to the Measurement of Interception Evaporation

    Source: Journal of Atmospheric and Oceanic Technology:;1997:;volume( 014 ):;issue: 005::page 1023
    Author:
    Lundberg, A.
    ,
    Eriksson, M.
    ,
    Halldin, S.
    ,
    Kellner, E.
    ,
    Seibert, J.
    DOI: 10.1175/1520-0426(1997)014<1023:NATTMO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Evaporation of water intercepted by vegetation represents an important (sometimes major) part of evapotranspiration in temperate regions. Interception evaporation is an important process where insufficient measurement techniques hamper progress in knowledge and modeling. An ideal technique to study the interception evaporation process should monitor intercepted mass (and its vertical distribution) and interception loss with high accuracy (0.1 mm) and time resolution (1 min), and give correct area estimates. The method should be inexpensive, require minor supervision during extended periods, and work in dense forests. Net precipitation techniques, in which interception evaporation is determined from the difference between gross precipitation (measured with funnels) and throughfall (measured with funnels, troughs, or plastic sheet net-rainfall gauges) fulfill many of the requirements but usually have a too-low accuracy and time resolution for process studies. Precipitation measurements are normally affected by distortion of the wind field around gauges as well as by adhesive and evaporative losses. Throughfall measurements with precipitation funnels, troughs, or plastic sheet net-rainfall gauges, manually emptied or combined with tipping buckets, usually have too-low accuracy and time resolution for process studies and are impaired by adhesive losses. A new loadcell-based system to determine interception evaporation from gross and net precipitation is presented. A weighing gauge with minimal wind loss is used for precipitation, and weighing troughs are used for throughfall measurements. The weighing troughs minimize adhesive-loss errors and react instantaneously. Preliminary results with the method confirm that it can be used for process studies with a high accuracy (0.1 mm) and a high time resolution (1 min).
    • Download: (304.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Approach to the Measurement of Interception Evaporation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148524
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorLundberg, A.
    contributor authorEriksson, M.
    contributor authorHalldin, S.
    contributor authorKellner, E.
    contributor authorSeibert, J.
    date accessioned2017-06-09T14:08:18Z
    date available2017-06-09T14:08:18Z
    date copyright1997/10/01
    date issued1997
    identifier issn0739-0572
    identifier otherams-1311.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148524
    description abstractEvaporation of water intercepted by vegetation represents an important (sometimes major) part of evapotranspiration in temperate regions. Interception evaporation is an important process where insufficient measurement techniques hamper progress in knowledge and modeling. An ideal technique to study the interception evaporation process should monitor intercepted mass (and its vertical distribution) and interception loss with high accuracy (0.1 mm) and time resolution (1 min), and give correct area estimates. The method should be inexpensive, require minor supervision during extended periods, and work in dense forests. Net precipitation techniques, in which interception evaporation is determined from the difference between gross precipitation (measured with funnels) and throughfall (measured with funnels, troughs, or plastic sheet net-rainfall gauges) fulfill many of the requirements but usually have a too-low accuracy and time resolution for process studies. Precipitation measurements are normally affected by distortion of the wind field around gauges as well as by adhesive and evaporative losses. Throughfall measurements with precipitation funnels, troughs, or plastic sheet net-rainfall gauges, manually emptied or combined with tipping buckets, usually have too-low accuracy and time resolution for process studies and are impaired by adhesive losses. A new loadcell-based system to determine interception evaporation from gross and net precipitation is presented. A weighing gauge with minimal wind loss is used for precipitation, and weighing troughs are used for throughfall measurements. The weighing troughs minimize adhesive-loss errors and react instantaneously. Preliminary results with the method confirm that it can be used for process studies with a high accuracy (0.1 mm) and a high time resolution (1 min).
    publisherAmerican Meteorological Society
    titleNew Approach to the Measurement of Interception Evaporation
    typeJournal Paper
    journal volume14
    journal issue5
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/1520-0426(1997)014<1023:NATTMO>2.0.CO;2
    journal fristpage1023
    journal lastpage1035
    treeJournal of Atmospheric and Oceanic Technology:;1997:;volume( 014 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian