YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeled Downward Transport of a Passive Tracer over Western North America during an Asian Dust Event in April 1998

    Source: Journal of Applied Meteorology:;2001:;volume( 040 ):;issue: 009::page 1617
    Author:
    Hacker, Joshua P.
    ,
    McKendry, Ian G.
    ,
    Stull, Roland B.
    DOI: 10.1175/1520-0450(2001)040<1617:MDTOAP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An intense Gobi Desert dust storm in April 1998 loaded the midtroposphere with dust that was transported across the Pacific to western North America. The Mesoscale Compressible Community (MC2) model was used to investigate mechanisms causing downward transport of the midtropospheric dust and to explain the high concentrations of particulate matter of less than 10-?m diameter measured in the coastal urban areas of Washington and southern British Columbia. The MC2 was initialized with a thin, horizontally homogeneous layer of passive tracer centered at 650 hPa for a simulation from 0000 UTC 26 April to 0000 UTC 30 April 1998. Model results were in qualitative agreement with observed spatial and temporal patterns of particulate matter, indicating that it captured the important meteorological processes responsible for the horizontal and vertical transport over the last few days of the dust event. A second simulation was performed without topography to isolate the effects of topography on downward transport. Results show that the dust was advected well east of the North American coast in southwesterly midtropospheric flow, with negligible dust concentration reaching the surface initially. Vertically propagating mountain waves formed during this stage, and differences between downward and upward velocities in these waves could account for a rapid descent of dust to terrain height, where the dust was entrained into the turbulent planetary boundary layer. A deepening outflow (easterly) layer near the surface transported the tracer westward and created a zonal-shear layer that further controlled the tracer advection. Later, the shear layer lifted, leading to a downward hydraulic acceleration along the western slopes, as waves generated in the easterly flow amplified below the shear layer that was just above mountain-crest height. Examination of 10 yr of National Centers for Environmental Prediction?National Center for Atmospheric Research reanalyses suggests that such events are rare.
    • Download: (976.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeled Downward Transport of a Passive Tracer over Western North America during an Asian Dust Event in April 1998

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148450
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorHacker, Joshua P.
    contributor authorMcKendry, Ian G.
    contributor authorStull, Roland B.
    date accessioned2017-06-09T14:08:02Z
    date available2017-06-09T14:08:02Z
    date copyright2001/09/01
    date issued2001
    identifier issn0894-8763
    identifier otherams-13043.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148450
    description abstractAn intense Gobi Desert dust storm in April 1998 loaded the midtroposphere with dust that was transported across the Pacific to western North America. The Mesoscale Compressible Community (MC2) model was used to investigate mechanisms causing downward transport of the midtropospheric dust and to explain the high concentrations of particulate matter of less than 10-?m diameter measured in the coastal urban areas of Washington and southern British Columbia. The MC2 was initialized with a thin, horizontally homogeneous layer of passive tracer centered at 650 hPa for a simulation from 0000 UTC 26 April to 0000 UTC 30 April 1998. Model results were in qualitative agreement with observed spatial and temporal patterns of particulate matter, indicating that it captured the important meteorological processes responsible for the horizontal and vertical transport over the last few days of the dust event. A second simulation was performed without topography to isolate the effects of topography on downward transport. Results show that the dust was advected well east of the North American coast in southwesterly midtropospheric flow, with negligible dust concentration reaching the surface initially. Vertically propagating mountain waves formed during this stage, and differences between downward and upward velocities in these waves could account for a rapid descent of dust to terrain height, where the dust was entrained into the turbulent planetary boundary layer. A deepening outflow (easterly) layer near the surface transported the tracer westward and created a zonal-shear layer that further controlled the tracer advection. Later, the shear layer lifted, leading to a downward hydraulic acceleration along the western slopes, as waves generated in the easterly flow amplified below the shear layer that was just above mountain-crest height. Examination of 10 yr of National Centers for Environmental Prediction?National Center for Atmospheric Research reanalyses suggests that such events are rare.
    publisherAmerican Meteorological Society
    titleModeled Downward Transport of a Passive Tracer over Western North America during an Asian Dust Event in April 1998
    typeJournal Paper
    journal volume40
    journal issue9
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(2001)040<1617:MDTOAP>2.0.CO;2
    journal fristpage1617
    journal lastpage1628
    treeJournal of Applied Meteorology:;2001:;volume( 040 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian