YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Physical Basis for the Temperature-Based Melt-Index Method

    Source: Journal of Applied Meteorology:;2001:;volume( 040 ):;issue: 004::page 753
    Author:
    Ohmura, Atsumu
    DOI: 10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The close relationship between air temperature measured at standard screen level and the rate of melt on snow and ice has been widely used to estimate the rate of melt. The parameterization of the melt rate using air temperature usually takes a simple form as a function of either the mean temperature for the relevant period or positive degree-day statistics. The computation provides the melt rate with sufficient accuracy for most practical purposes. Because of its simplicity, it is often called a crude method and is rated as inferior to other more sophisticated methods such as the energy balance method. The method is often used with the justification that temperature data are easily available or that obtaining energy balance fluxes is difficult. The physical process responsible for the temperature effect on the melt rate is often attributed to the sensible heat conduction from the atmosphere. The simulation capacity of the temperature-based melt-index method, however, is too good to be called crude and inferior. The author investigated physical processes that make the air temperature so effective a parameter for melt rate. Air temperature has a more profound influence on melt than previously has been acknowledged. The influence of air temperature through the turbulent sensible heat flux is limited, however. The air temperature information is transferred to the surface mainly through longwave atmospheric radiation, which is by far the most important heat source for melt. Under cloudless-sky conditions, as much as 60% of the atmospheric emission is derived from within the first 100 m and 90% from the first 1 km of the atmosphere. When the sky is overcast with the cloud bottom within the first 1 km, more than 90% originates within this layer between the surface and the bottom of the cloud. When the sky is overcast with the cloud bottom higher than 1 km, the first 1 km of the atmosphere still makes up about 70% of the longwave irradiance at the surface, for which the air temperature measured at standard screen level is the single most influential factor. Wind speed is only weakly correlated with melt rate, because the main energy source for melting is longwave atmospheric radiation, followed by the absorbed global radiation, both of which are independent of the movement of the atmosphere.
    • Download: (80.72Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Physical Basis for the Temperature-Based Melt-Index Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148381
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorOhmura, Atsumu
    date accessioned2017-06-09T14:07:49Z
    date available2017-06-09T14:07:49Z
    date copyright2001/04/01
    date issued2001
    identifier issn0894-8763
    identifier otherams-12982.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148381
    description abstractThe close relationship between air temperature measured at standard screen level and the rate of melt on snow and ice has been widely used to estimate the rate of melt. The parameterization of the melt rate using air temperature usually takes a simple form as a function of either the mean temperature for the relevant period or positive degree-day statistics. The computation provides the melt rate with sufficient accuracy for most practical purposes. Because of its simplicity, it is often called a crude method and is rated as inferior to other more sophisticated methods such as the energy balance method. The method is often used with the justification that temperature data are easily available or that obtaining energy balance fluxes is difficult. The physical process responsible for the temperature effect on the melt rate is often attributed to the sensible heat conduction from the atmosphere. The simulation capacity of the temperature-based melt-index method, however, is too good to be called crude and inferior. The author investigated physical processes that make the air temperature so effective a parameter for melt rate. Air temperature has a more profound influence on melt than previously has been acknowledged. The influence of air temperature through the turbulent sensible heat flux is limited, however. The air temperature information is transferred to the surface mainly through longwave atmospheric radiation, which is by far the most important heat source for melt. Under cloudless-sky conditions, as much as 60% of the atmospheric emission is derived from within the first 100 m and 90% from the first 1 km of the atmosphere. When the sky is overcast with the cloud bottom within the first 1 km, more than 90% originates within this layer between the surface and the bottom of the cloud. When the sky is overcast with the cloud bottom higher than 1 km, the first 1 km of the atmosphere still makes up about 70% of the longwave irradiance at the surface, for which the air temperature measured at standard screen level is the single most influential factor. Wind speed is only weakly correlated with melt rate, because the main energy source for melting is longwave atmospheric radiation, followed by the absorbed global radiation, both of which are independent of the movement of the atmosphere.
    publisherAmerican Meteorological Society
    titlePhysical Basis for the Temperature-Based Melt-Index Method
    typeJournal Paper
    journal volume40
    journal issue4
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2
    journal fristpage753
    journal lastpage761
    treeJournal of Applied Meteorology:;2001:;volume( 040 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian