YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dependence of Turbulent and Mesoscale Velocity Variances on Scale and Stability

    Source: Journal of Applied Meteorology:;2001:;volume( 040 ):;issue: 003::page 628
    Author:
    Mahrt, L.
    ,
    Moore, Erin
    ,
    Vickers, Dean
    ,
    Jensen, N. O.
    DOI: 10.1175/1520-0450(2001)040<0628:DOTAMV>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The scale dependence of velocity variances is studied using data collected from a grassland site, a heather site, and four forested sites. The dependence of velocity variances on averaging time, used to define the fluctuation quantities, is modeled. The crosswind velocity variance is emphasized, because it is more difficult to model than the other two components and is crucial input for applications such as dispersion modeling. The distinction between turbulence and mesoscale variances is examined in detail. Because mesoscale and turbulence motions are governed by different physics, meaningful study of the behavior of velocity variances requires adequate separation of turbulence and mesoscale motions from data. For stable conditions, the horizontal velocity variances near the surface exhibit a spectral gap, here corresponding to a very slow or nonexistent increase of variance with increasing averaging time. This ?gap region,? when it occurs, allows separation of mesoscale and turbulence motions; however, the averaging times corresponding to this gap vary substantially with stability. A choice of typical averaging times for defining turbulent perturbations, such as 5 or 10 min, leads to the capture of significant mesoscale motions for very stable conditions and contributes to the disagreement with turbulence similarity theory. For unstable motions, the gap region for the horizontal velocity variances shrinks or becomes poorly defined, because large convective eddies tend to ?fill in? the gap between turbulence and mesoscale motions. The formulation developed here allows turbulence and mesoscale motions to overlap into the same intermediate timescales. The mesoscale variances are less predictable, because a wide variety of physical processes contribute to mesoscale motions. Their magnitude and range of timescales vary substantially among sites. The variation of the behavior of turbulence variances among sites is significant but substantially less than that for the mesoscale motions.
    • Download: (152.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dependence of Turbulent and Mesoscale Velocity Variances on Scale and Stability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148372
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorMahrt, L.
    contributor authorMoore, Erin
    contributor authorVickers, Dean
    contributor authorJensen, N. O.
    date accessioned2017-06-09T14:07:47Z
    date available2017-06-09T14:07:47Z
    date copyright2001/03/01
    date issued2001
    identifier issn0894-8763
    identifier otherams-12974.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148372
    description abstractThe scale dependence of velocity variances is studied using data collected from a grassland site, a heather site, and four forested sites. The dependence of velocity variances on averaging time, used to define the fluctuation quantities, is modeled. The crosswind velocity variance is emphasized, because it is more difficult to model than the other two components and is crucial input for applications such as dispersion modeling. The distinction between turbulence and mesoscale variances is examined in detail. Because mesoscale and turbulence motions are governed by different physics, meaningful study of the behavior of velocity variances requires adequate separation of turbulence and mesoscale motions from data. For stable conditions, the horizontal velocity variances near the surface exhibit a spectral gap, here corresponding to a very slow or nonexistent increase of variance with increasing averaging time. This ?gap region,? when it occurs, allows separation of mesoscale and turbulence motions; however, the averaging times corresponding to this gap vary substantially with stability. A choice of typical averaging times for defining turbulent perturbations, such as 5 or 10 min, leads to the capture of significant mesoscale motions for very stable conditions and contributes to the disagreement with turbulence similarity theory. For unstable motions, the gap region for the horizontal velocity variances shrinks or becomes poorly defined, because large convective eddies tend to ?fill in? the gap between turbulence and mesoscale motions. The formulation developed here allows turbulence and mesoscale motions to overlap into the same intermediate timescales. The mesoscale variances are less predictable, because a wide variety of physical processes contribute to mesoscale motions. Their magnitude and range of timescales vary substantially among sites. The variation of the behavior of turbulence variances among sites is significant but substantially less than that for the mesoscale motions.
    publisherAmerican Meteorological Society
    titleDependence of Turbulent and Mesoscale Velocity Variances on Scale and Stability
    typeJournal Paper
    journal volume40
    journal issue3
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(2001)040<0628:DOTAMV>2.0.CO;2
    journal fristpage628
    journal lastpage641
    treeJournal of Applied Meteorology:;2001:;volume( 040 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian