YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantification of Path-Integrated Attenuation for X- and C-Band Weather Radar Systems Operating in Mediterranean Heavy Rainfall

    Source: Journal of Applied Meteorology:;2000:;volume( 039 ):;issue: 006::page 840
    Author:
    Delrieu, Guy
    ,
    Andrieu, Hervé
    ,
    Creutin, Jean Dominique
    DOI: 10.1175/1520-0450(2000)039<0840:QOPIAF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The aim of the current study is to quantify attenuation effects that X- and C-band weather radar systems may experience in heavy rainfall. Part of this information can be obtained from power-law relationships between the attenuation coefficient k (dB km?1) and the rain rate R (mm h?1). These relations exhibit a strong dependence on the wavelength used and a significant influence of the raindrop size and temperature distributions. Here the purpose is to go one step further by providing estimates of the path-integrated attenuations (PIAs) that could be observed as a function of range for a given wavelength. Obviously, these values depend on the space and time structure of rainfall and, therefore, refer to a given climatological context. The methodology used consists of using k?R relations to downgrade carefully processed S-band radar data to the corresponding X- and C-band signals. The data were collected in the Cévennes region, a Mediterranean region in France subject to intense and long-lasting rain events during the autumn season. A refined data processing procedure was applied to the available reflectivity measurements, including ground-clutter removal and correction for the effects of the vertical profile of reflectivity as well as a final bias adjustment using rain gauge data. For three rain events, 75 h of instantaneous rain-rate fields thus were available with total rain amounts that exceeded 300 mm over most of the area of interest. Examples of attenuated profiles are presented, and PIA-range-frequency curves are established for the two wavelengths considered under various hypotheses that concern the raindrop size distribution. One of the results is that, at C band, a PIA of 3 dB is exceeded for 5% of the rain-rate profiles at a range of 50 km. Another finding is that a multiplicative factor of about 6 exists between C- and X-band attenuation effects. Implications for rain-rate estimation at X- and C band are discussed.
    • Download: (431.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantification of Path-Integrated Attenuation for X- and C-Band Weather Radar Systems Operating in Mediterranean Heavy Rainfall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148232
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorDelrieu, Guy
    contributor authorAndrieu, Hervé
    contributor authorCreutin, Jean Dominique
    date accessioned2017-06-09T14:07:25Z
    date available2017-06-09T14:07:25Z
    date copyright2000/06/01
    date issued2000
    identifier issn0894-8763
    identifier otherams-12848.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148232
    description abstractThe aim of the current study is to quantify attenuation effects that X- and C-band weather radar systems may experience in heavy rainfall. Part of this information can be obtained from power-law relationships between the attenuation coefficient k (dB km?1) and the rain rate R (mm h?1). These relations exhibit a strong dependence on the wavelength used and a significant influence of the raindrop size and temperature distributions. Here the purpose is to go one step further by providing estimates of the path-integrated attenuations (PIAs) that could be observed as a function of range for a given wavelength. Obviously, these values depend on the space and time structure of rainfall and, therefore, refer to a given climatological context. The methodology used consists of using k?R relations to downgrade carefully processed S-band radar data to the corresponding X- and C-band signals. The data were collected in the Cévennes region, a Mediterranean region in France subject to intense and long-lasting rain events during the autumn season. A refined data processing procedure was applied to the available reflectivity measurements, including ground-clutter removal and correction for the effects of the vertical profile of reflectivity as well as a final bias adjustment using rain gauge data. For three rain events, 75 h of instantaneous rain-rate fields thus were available with total rain amounts that exceeded 300 mm over most of the area of interest. Examples of attenuated profiles are presented, and PIA-range-frequency curves are established for the two wavelengths considered under various hypotheses that concern the raindrop size distribution. One of the results is that, at C band, a PIA of 3 dB is exceeded for 5% of the rain-rate profiles at a range of 50 km. Another finding is that a multiplicative factor of about 6 exists between C- and X-band attenuation effects. Implications for rain-rate estimation at X- and C band are discussed.
    publisherAmerican Meteorological Society
    titleQuantification of Path-Integrated Attenuation for X- and C-Band Weather Radar Systems Operating in Mediterranean Heavy Rainfall
    typeJournal Paper
    journal volume39
    journal issue6
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(2000)039<0840:QOPIAF>2.0.CO;2
    journal fristpage840
    journal lastpage850
    treeJournal of Applied Meteorology:;2000:;volume( 039 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian