YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assimilation of NEXRAD-VAD Winds in Summertime Meteorological Simulations over the Northeastern United States

    Source: Journal of Applied Meteorology:;2000:;volume( 039 ):;issue: 003::page 367
    Author:
    Michelson, Sara A.
    ,
    Seaman, Nelson L.
    DOI: 10.1175/1520-0450(2000)039<0367:AONVWI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Next-Generation Radar (NEXRAD) velocity azimuth display (VAD) winds were available at 10 sites in the northeastern United States during intensive observing periods of the North American Research Strategy on Tropospheric Ozone-Northeast field study conducted in the summer of 1995. These VAD winds represent a potentially valuable routine source of upper-air data suitable for mesoscale four-dimensional data assimilation and other mesometeorological applications. The objectives of this paper are to develop appropriate quality-checking methods for these data during a period with weak dynamic forcing and to learn if their assimilation into a nonhydrostatic mesoscale model, the Fifth-Generation Pennsylvania State University?National Center for Atmospheric Research Mesoscale Model (MM5), can reduce wind errors in lengthy numerical integrations. Two types of quality checking were applied: 1) a standard internal vertical and temporal consistency check, and 2) a new filter that uses bias-corrected model predictions as a first guess. After unreliable data were removed, the VAD winds were assimilated into MM5. Experiment evaluation using independent data demonstrated that the VAD winds significantly reduced model wind errors, especially below 2.0 km, where the wind data are most numerous in this case. Independent verification also indicated that the filter presented in this paper contributed to the improvement of the data-assimilated model results. Although the application in this case is designed to generate wind fields to drive an air quality model, the techniques developed, with some generalization and testing, also should be adaptable for forecast-initialization applications.
    • Download: (277.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assimilation of NEXRAD-VAD Winds in Summertime Meteorological Simulations over the Northeastern United States

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148205
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorMichelson, Sara A.
    contributor authorSeaman, Nelson L.
    date accessioned2017-06-09T14:07:20Z
    date available2017-06-09T14:07:20Z
    date copyright2000/03/01
    date issued2000
    identifier issn0894-8763
    identifier otherams-12823.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148205
    description abstractNext-Generation Radar (NEXRAD) velocity azimuth display (VAD) winds were available at 10 sites in the northeastern United States during intensive observing periods of the North American Research Strategy on Tropospheric Ozone-Northeast field study conducted in the summer of 1995. These VAD winds represent a potentially valuable routine source of upper-air data suitable for mesoscale four-dimensional data assimilation and other mesometeorological applications. The objectives of this paper are to develop appropriate quality-checking methods for these data during a period with weak dynamic forcing and to learn if their assimilation into a nonhydrostatic mesoscale model, the Fifth-Generation Pennsylvania State University?National Center for Atmospheric Research Mesoscale Model (MM5), can reduce wind errors in lengthy numerical integrations. Two types of quality checking were applied: 1) a standard internal vertical and temporal consistency check, and 2) a new filter that uses bias-corrected model predictions as a first guess. After unreliable data were removed, the VAD winds were assimilated into MM5. Experiment evaluation using independent data demonstrated that the VAD winds significantly reduced model wind errors, especially below 2.0 km, where the wind data are most numerous in this case. Independent verification also indicated that the filter presented in this paper contributed to the improvement of the data-assimilated model results. Although the application in this case is designed to generate wind fields to drive an air quality model, the techniques developed, with some generalization and testing, also should be adaptable for forecast-initialization applications.
    publisherAmerican Meteorological Society
    titleAssimilation of NEXRAD-VAD Winds in Summertime Meteorological Simulations over the Northeastern United States
    typeJournal Paper
    journal volume39
    journal issue3
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(2000)039<0367:AONVWI>2.0.CO;2
    journal fristpage367
    journal lastpage383
    treeJournal of Applied Meteorology:;2000:;volume( 039 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian