YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Role of Vertical Mixing in the Temporal Evolution of Ground-Level Ozone Concentrations

    Source: Journal of Applied Meteorology:;1999:;volume( 038 ):;issue: 012::page 1674
    Author:
    Zhang, Jian
    ,
    Rao, S. Trivikrama
    DOI: 10.1175/1520-0450(1999)038<1674:TROVMI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Aircraft measurements taken during the North American Research Strategy for Tropospheric Ozone-Northeast field study reveal the presence of ozone concentration levels in excess of 80 ppb on a regional scale in the nocturnal residual layer during ozone episodes. The air mass containing increased concentrations of ozone commonly is found on a horizontal spatial scale of about 600 km over the eastern United States. The diurnal variation in ozone concentrations at different altitudes, ozone flux measurements, and vertical profiles of ozone suggest that ozone and its precursors trapped aloft in the nocturnal residual layer can influence the ground-level ozone concentrations on the following day as the surface-based inversion starts to break up. A simple one-dimensional model, treating both meteorological and chemical processes, has been applied to investigate the relative contributions of vertical mixing and photochemical reactions to the temporal evolution of the ground-level ozone concentration during the daytime. The results demonstrate that the vertical mixing process contributes significantly to the ozone buildup at ground level in the morning as the mixing layer starts to grow rapidly. When the top of the mixing layer reaches the ozone-rich layer aloft, high ozone concentrations are brought down into the mixing layer, rapidly increasing the ground-level ozone concentration because of fumigation. As the mixing layer grows further, it contributes to dilution while the chemical processes continue to contribute to ozone production. Model simulations also were performed for an urban site with different amounts of reduction in the ground-level emissions as well as a 50% reduction in the concentration levels of ozone and its precursors aloft. The results reveal that a greater reduction in the ground-level ozone concentration can be achieved by decreasing the concentrations of ozone and precursors aloft than can be achieved from a reduction of local emissions. Given the regional extent of the polluted dome aloft during a typical ozone episode in the northeastern United States, these results demonstrate the necessity and importance of implementing emission reduction strategies on the regional scale; such regionwide emission controls would reduce effectively the long-range transport of pollutants in the Northeast.
    • Download: (1.268Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Role of Vertical Mixing in the Temporal Evolution of Ground-Level Ozone Concentrations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148168
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorZhang, Jian
    contributor authorRao, S. Trivikrama
    date accessioned2017-06-09T14:07:13Z
    date available2017-06-09T14:07:13Z
    date copyright1999/12/01
    date issued1999
    identifier issn0894-8763
    identifier otherams-12790.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148168
    description abstractAircraft measurements taken during the North American Research Strategy for Tropospheric Ozone-Northeast field study reveal the presence of ozone concentration levels in excess of 80 ppb on a regional scale in the nocturnal residual layer during ozone episodes. The air mass containing increased concentrations of ozone commonly is found on a horizontal spatial scale of about 600 km over the eastern United States. The diurnal variation in ozone concentrations at different altitudes, ozone flux measurements, and vertical profiles of ozone suggest that ozone and its precursors trapped aloft in the nocturnal residual layer can influence the ground-level ozone concentrations on the following day as the surface-based inversion starts to break up. A simple one-dimensional model, treating both meteorological and chemical processes, has been applied to investigate the relative contributions of vertical mixing and photochemical reactions to the temporal evolution of the ground-level ozone concentration during the daytime. The results demonstrate that the vertical mixing process contributes significantly to the ozone buildup at ground level in the morning as the mixing layer starts to grow rapidly. When the top of the mixing layer reaches the ozone-rich layer aloft, high ozone concentrations are brought down into the mixing layer, rapidly increasing the ground-level ozone concentration because of fumigation. As the mixing layer grows further, it contributes to dilution while the chemical processes continue to contribute to ozone production. Model simulations also were performed for an urban site with different amounts of reduction in the ground-level emissions as well as a 50% reduction in the concentration levels of ozone and its precursors aloft. The results reveal that a greater reduction in the ground-level ozone concentration can be achieved by decreasing the concentrations of ozone and precursors aloft than can be achieved from a reduction of local emissions. Given the regional extent of the polluted dome aloft during a typical ozone episode in the northeastern United States, these results demonstrate the necessity and importance of implementing emission reduction strategies on the regional scale; such regionwide emission controls would reduce effectively the long-range transport of pollutants in the Northeast.
    publisherAmerican Meteorological Society
    titleThe Role of Vertical Mixing in the Temporal Evolution of Ground-Level Ozone Concentrations
    typeJournal Paper
    journal volume38
    journal issue12
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1999)038<1674:TROVMI>2.0.CO;2
    journal fristpage1674
    journal lastpage1691
    treeJournal of Applied Meteorology:;1999:;volume( 038 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian