YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons

    Source: Journal of Applied Meteorology:;1999:;volume( 038 ):;issue: 009::page 1249
    Author:
    Kim, Jae-Jin
    ,
    Baik, Jong-Jin
    DOI: 10.1175/1520-0450(1999)038<1249:ANSOTE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This study investigates thermal effects on the flow and pollutant dispersion in urban street canyons. A two-dimensional numerical model with a k?? turbulent closure scheme is developed, and the heat transfer between the air and the building wall or street-canyon bottom is effectively represented by a wall function. For each of seven cases with different aspect ratios (building height/width between buildings = 0.5, 1, 1.5, 2, 2.5, 3, and 3.5), four thermal situations (no heating, upwind building-wall heating, street-canyon bottom heating, and downwind building-wall heating) are considered. In the cases of upwind building-wall heating, one vortex appears regardless of aspect ratio. When the aspect ratio is greater than or equal to 1.5, the upward motion forced by upwind building-wall heating overcomes the downward motion that appears in the cases of no heating. In the cases of street-canyon bottom heating, when the aspect ratio is less than 3, flow patterns are similar to those in the cases of upwind building-wall heating. This similarity is because the maximum temperature axis is shifted toward the upwind side by the horizontal motion. However, when the aspect ratio is 3 or 3.5, the horizontal velocity is not strong enough to shift the maximum temperature axis toward the upwind side. When the maximum temperature axis is located near the center of the street canyon, two counterrotating vortices appear side by side in the lower layer due to the thermal upward motion around the axis, while the vortex in the upper layer is little influenced by bottom heating. With downwind building-wall heating, two counterrotating vortices appear except in the 0.5 aspect ratio case. To a large extent, the vortex in the upper layer is mechanically induced by the ambient wind, while the vortex in the lower layer is thermally induced by downwind building-wall heating. The dispersion of pollutants released at the street level is shown to be quite dependent upon aspect ratio and heat source location. The vortex number and intensity greatly influence the residue concentration ratio (ratio of the total pollutant amount remaining in the street canyon to the total amount of pollutants emitted) by controlling the travel pathway and escape time of pollutants.
    • Download: (1019.Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4148136
    Collections
    • Journal of Applied Meteorology

    Show full item record

    contributor authorKim, Jae-Jin
    contributor authorBaik, Jong-Jin
    date accessioned2017-06-09T14:07:06Z
    date available2017-06-09T14:07:06Z
    date copyright1999/09/01
    date issued1999
    identifier issn0894-8763
    identifier otherams-12761.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4148136
    description abstractThis study investigates thermal effects on the flow and pollutant dispersion in urban street canyons. A two-dimensional numerical model with a k?? turbulent closure scheme is developed, and the heat transfer between the air and the building wall or street-canyon bottom is effectively represented by a wall function. For each of seven cases with different aspect ratios (building height/width between buildings = 0.5, 1, 1.5, 2, 2.5, 3, and 3.5), four thermal situations (no heating, upwind building-wall heating, street-canyon bottom heating, and downwind building-wall heating) are considered. In the cases of upwind building-wall heating, one vortex appears regardless of aspect ratio. When the aspect ratio is greater than or equal to 1.5, the upward motion forced by upwind building-wall heating overcomes the downward motion that appears in the cases of no heating. In the cases of street-canyon bottom heating, when the aspect ratio is less than 3, flow patterns are similar to those in the cases of upwind building-wall heating. This similarity is because the maximum temperature axis is shifted toward the upwind side by the horizontal motion. However, when the aspect ratio is 3 or 3.5, the horizontal velocity is not strong enough to shift the maximum temperature axis toward the upwind side. When the maximum temperature axis is located near the center of the street canyon, two counterrotating vortices appear side by side in the lower layer due to the thermal upward motion around the axis, while the vortex in the upper layer is little influenced by bottom heating. With downwind building-wall heating, two counterrotating vortices appear except in the 0.5 aspect ratio case. To a large extent, the vortex in the upper layer is mechanically induced by the ambient wind, while the vortex in the lower layer is thermally induced by downwind building-wall heating. The dispersion of pollutants released at the street level is shown to be quite dependent upon aspect ratio and heat source location. The vortex number and intensity greatly influence the residue concentration ratio (ratio of the total pollutant amount remaining in the street canyon to the total amount of pollutants emitted) by controlling the travel pathway and escape time of pollutants.
    publisherAmerican Meteorological Society
    titleA Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons
    typeJournal Paper
    journal volume38
    journal issue9
    journal titleJournal of Applied Meteorology
    identifier doi10.1175/1520-0450(1999)038<1249:ANSOTE>2.0.CO;2
    journal fristpage1249
    journal lastpage1261
    treeJournal of Applied Meteorology:;1999:;volume( 038 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian